

El libro **Matemáticas 6**, para sexto curso de Educación Primaria, es una obra colectiva concebida, creada y realizada en el Departamento de Primaria de Santillana Educación S. L. bajo la dirección de José Tomás Henao.

Texto: José A. Almodóvar y Magdalena Rodríguez.

Ilustración: Esther Gómez y José M.ª Valera.

Edición: José A. Almodóvar y Magdalena Rodríguez.

Las actividades de este libro deben ser realizadas por el alumno en un cuaderno. En ningún caso deben realizarse en el mismo libro.

Presentación

Este libro forma parte del proyecto LA CASA DEL SABER, que es un espacio educativo en el que los alumnos pueden adquirir las capacidades necesarias para su desarrollo personal y social. Para lograrlo, los libros de Matemáticas pretenden que los alumnos alcancen los siguientes objetivos:

- Prepararse para el paso a la Educación Secundaria. Para ello, desarrollamos un Programa de Estudio Eficaz que ayuda a consolidar los conocimientos fundamentales y que promueve la autonomía de los alumnos respecto a su trabajo escolar.
- Aplicar lo que se aprende a la vida cotidiana. La aplicación de las Matemáticas en situaciones reales es el hilo conductor de este libro. Las numerosas actividades planteadas, el programa de Solución de problemas y el programa Eres capaz de... permiten que los alumnos utilicen los conocimientos adquiridos en situaciones reales.
- Trabajar las Matemáticas eficazmente y de forma global. Los libros ofrecen numerosos ejemplos de respuesta para que los alumnos tengan claro qué deben hacer y cómo responder, facilitando así una práctica eficaz. Los programas Razonamiento, Gráficos, Cálculo mental y Taller de Geometría contribuyen a una práctica global de todos los aspectos de las Matemáticas.
- Consolidar los aprendizajes fundamentales.
 Para garantizar el aprendizaje, en cada unidad se recogen los contenidos de los cursos o unidades anteriores que están relacionados con lo que se va a aprender. Además, se plantean actividades de repaso acumulativo en cada unidad, y en cada trimestre.

LA CASA DEL SABER es un proyecto en el que cabemos todos. Pretende que los alumnos reconozcan y valoren la diversidad cultural de la sociedad en la que viven y contribuye de forma eficaz a la educación en valores.

UNIDAD			INFORMACIÓN Y ACTIVIDADES				
	neros naturales. raciones	6	Números de hasta nueve cifrasOperaciones combinadasProblemas de varias operaciones				
	encias y raíz drada	18	 Potencias Potencias de base 10 Expresión polinómica de un número Raíz cuadrada 				
3 Nún	neros enteros	30	 Los números enteros Problemas con números enteros La recta entera. Comparación de números enteros 	Coordenadas cartesianas			
	tiplos y sores	46	 Múltiplos de un número Mínimo común múltiplo Divisores de un número Criterios de divisibilidad por 2, 3 y 5 	 Cálculo de todos los divisores de un número Números primos y compuestos Máximo común divisor 			
5 Áng	gulos	60	Unidades de medida de ángulosSuma de ángulosResta de ángulos	 Ángulos complementarios y suplementarios Ángulos de más de 180° 			
REPASO TRIME	STRAL						
6 Frac	cciones	78	 Fracciones y números mixtos Fracciones equivalentes Obtención de fracciones equivalentes Reducción a común denominador 	Comparación de fracciones			
	raciones con ciones	92	 Suma de fracciones Resta de fracciones Multiplicación de fracciones División de fracciones 				
	neros decimales. raciones	106	 Suma y resta de números decimales Multiplicación de números decimales Aproximación de números decimales Estimaciones 				
	sión de neros decimales	120	 División de un decimal entre un natural División de un natural entre un decimal División de un decimal entre un decimal 	 Obtención de cifras decimales en el cociente Problemas con decimales 			
10 Figu	ıras planas	134	 Base y altura de triángulos y paralelogramos Suma de los ángulos de triángulos y cuadriláteros La circunferencia. Elementos 	 El número π y la longitud de la circunferencia El círculo y las figuras circulares Posiciones de rectas y circunferencias 			
REPASO TRIME	ESTRAL						
	porcionalidad orcentajes	152	Proporcionalidad. Problemas.Problemas con porcentajesEscalas: planos y mapas				
capa	gitud, acidad, masa y erficie	164	 Unidades de longitud. Relaciones Unidades de capacidad. Relaciones Unidades de masa. Relaciones Unidades de superficie 	 Relaciones entre unidades de superficie Unidades agrarias 			
13 Área plan	a de figuras nas	180	 Área del rectángulo y del cuadrado Área del rombo Área del romboide Área del triángulo 	Área de polígonos regularesÁrea del círculoÁrea de una figura plana			
14 geor	rpos métricos. umen	196	Poliedros. Poliedros regularesVolumen con un cubo unidadVolumen y capacidadUnidades de volumen				
15 Esta	ndística	208	Variables estadísticasFrecuencia absoluta y frecuencia relativaMedia y moda	Mediana Rango			

CÁLCULO MENTAL	SOLUCIÓN DE PROBLEMAS	GRÁFICOS	REPASA
Calcular sumas y restas sin paréntesisCalcular sumas y restas con paréntesis	Pasos para resolver un problema		Números naturales Operaciones
 Calcular operaciones combinadas sin paréntesis Calcular operaciones combinadas con paréntesis 	Buscar datos en varios gráficos		Números naturalesOperacionesOperaciones combinadas
 Sumar 1.001, 2.001, 3.001 a números de 4 cifras Sumar 999, 1.999, 2.999 a números de 4 cifras 	Buscar datos en varios textos o gráficos	Gráficos lineales de tres características	Operaciones Operaciones combinadas Potencias y raíz cuadrada
 Restar 1.001, 2.001, 3.001 a números de 4 cifras Restar 999, 1.999, 2.999 a números de 4 cifras 	Hacer una tabla		Operaciones combinadas Potencias y raíz cuadrada Números enteros
 Dividir un número natural entre decenas y centenas Calcular la fracción de un número 	Hacer un dibujo		Números naturalesPotencias y raíz cuadradaNúmeros enterosDivisibilidad
 Sumar por compensación: sumar y restar el mismo número Sumar por compensación: restar y sumar el mismo número 	Ensayo y error		Números enterosDivisibilidadÁngulos
 Restar por compensación: sumar el mismo número Restar por compensación: restar el mismo número 	Representar la situación		Operaciones Operaciones combinadas Fracciones
Multiplicar un número natural por 2Multiplicar un número natural por 5	Anticipar una solución aproximada	Histogramas	Divisibilidad Fracciones Suma y resta de fracciones
Multiplicar un número natural por 11Multiplicar un número natural por 9	Representar datos con dibujos		Números naturales Operaciones con fracciones y decimales
Multiplicar un número natural por 101Multiplicar un número natural por 99	lmaginar el problema resuelto		Fracciones y decimales Operaciones con fracciones y decimales
			·
 Estimar sumas y restas aproximando los números decimales a las unidades 	Resolver un problema empezando por el final		Números decimales Operaciones con decimales Figuras planas
Sumar un número decimal y un naturalRestar un número natural a un decimal	Representar gráficamente la situación		Números enteros Operaciones con fracciones y decimales Proporcionalidad
 Estimar productos aproximando el número decimal a las unidades Multiplicar un número decimal por decenas y centenas 	Reducir el problema a otro problema conocido	Gráficos de sectores	Números naturales Proporcionalidad Longitud, capacidad y masa
Calcular el 10% de un númeroCalcular el 50% de un número	Empezar con problemas más sencillos		OperacionesÁrea de figuras planasSuperficie
Calcular el 20 % de un númeroCalcular el 25 % de un número	Hacer un diagrama de árbol		Números naturales Fracciones y decimales Volumen

1

Números naturales. Operaciones

La Tierra gira alrededor del Sol.

En cada vuelta recorre unos 930 millones de kilómetros. Tarda en dar una vuelta 365 días y 6 horas y viaja a una gran velocidad. Cada hora recorre 106.000 km.

La Tierra no siempre está a la misma distancia del Sol. La distancia media entre ambos es 1 UA (unidad astronómica), que equivale a 149.675.000 km.

- Escribe con cifras los kilómetros que recorre la Tierra al dar una vuelta alrededor del Sol. ¿Cuántas cifras tiene el número? ¿Cuántas de ellas son ceros?
- ¿Qué es 1 UA? ¿Cuántos kilómetros son? La distancia media entre el Sol y Marte es casi doscientos veintiocho millones de kilómetros. ¿Qué planeta está más lejos del Sol, la Tierra o Marte?
- ¿Cuántos kilómetros recorre la Tierra en una hora? ¿Y en un día?

RECUERDA LO QUE SABES

Operaciones con números naturales

Suma

Multiplicación

$$\begin{array}{c}
2 & 4 & 5 & 7 & \leftarrow \text{ factor} \\
\times & 6 & 0 & 3 & \leftarrow \text{ factor} \\
\hline
7 & 3 & 7 & 1 & \leftarrow \\
1 & 4 & 7 & 4 & 2 & 0 & \leftarrow \\
\hline
1 & 4 & 8 & 1 & 5 & 7 & 1 & \leftarrow \text{ producto}
\end{array}$$

Resta

División

dividendo
$$\rightarrow$$
 4 6 9 5 7 \lfloor 4 3 \leftarrow divisor 3 9 5 1 0 9 2 \leftarrow cociente 0 8 7 resto \rightarrow 0 1

Estimación de operaciones

 Estimación de sumas 4.297 + 1.835

Estimación de restas

$$7.500 - 300 = 7.200$$

Estimación de productos

$$5.761 \times 2$$

$$6.000 \times 2 = 12.000$$

1. Calcula. Después, haz la prueba de las restas y las divisiones.

2. Calcula el término que falta en cada operación.

$$\bullet$$
 62.734 + \blacksquare = 68.251

$$\bullet$$
 + 49.018 = 73.542

$$\bullet$$
 \blacksquare + 49.018 = 73.542 \bullet 29.035 \blacksquare = 4.187

3. Estima las siguientes operaciones.

VAS A APRENDER

- A leer, escribir, descomponer y comparar números de hasta 9 cifras.
- A calcular operaciones combinadas con y sin paréntesis y expresarlas con una frase.
- A resolver problemas de varias operaciones.

Números de hasta nueve cifras

Observa los nueve primeros órdenes de unidades.

Centena
de millónDecena
de millónUnidad de
millónCentena
de millarDecena
de millarUnidad
de millarCentena
de millarDecena
de millar

Recuerda que nuestro **sistema de numeración** es **decimal**, es decir, 10 unidades de un orden forman una unidad del orden inmediato superior.

$$\begin{array}{l} 1 \text{ U} \\ 1 \text{ D} = 10 \text{ U} \\ 1 \text{ C} = 10 \text{ D} = 100 \text{ U} \\ 1 \text{ UM} = 10 \text{ C} = 1.000 \text{ U} \\ 1 \text{ DM} = 10 \text{ UM} = 10.000 \text{ U} \\ 1 \text{ CM} = 10 \text{ DM} = 100.000 \text{ U} \\ 1 \text{ U. de millón} = 10 \text{ CM} = 1.000.000 \text{ U} \\ 1 \text{ D. de millón} = 10 \text{ U. de millón} = 10.000.000 \text{ U} \\ 1 \text{ C. de millón} = 10 \text{ D. de millón} = 100.000.000 \text{ U} \\ \end{array}$$

• Fíjate cómo se descompone y se lee el número 502.816.030.

$$502.816.030 = 5$$
 C. de millón + 2 U. de millón + 8 CM + 1 DM + 6 UM + 3 D = $500.000.000 + 2.000.000 + 800.000 + 10.000 + 6.000 + 30$

502.816.030 se lee quinientos dos millones ochocientos dieciséis mil treinta.

En el sistema decimal, 10 unidades de un orden forman una unidad del orden inmediato superior. Por ejemplo, 10 unidades forman 1 decena y 10 centenas de millar 1 millón.

1. Descompón los siguientes números.

 3.970.205
 24.508.960
 302.750.681
 540.309.027

 8.016.043
 70.435.009
 897.060.100
 900.286.415

- 2. Escribe cómo se lee cada número de la actividad 1.
- 3. Escribe los siguientes números.

PRESTA ATENCIÓN

En un número, el primer punto por la derecha indica los millares, y el segundo punto los millones.

- Seiscientos cuarenta mil noventa y cinco.
- Cuatro millones veintitrés mil setecientos uno.
- Setenta y tres millones quinientos diez mil.
- Ochocientos nueve millones cien mil seis.

4. Escribe el número anterior y el posterior.

● ... ◀ 1.000.000 ▶ ...

... < 30.000.000 ▶ ...

... ◀ 9.386.999 ▶ ...

... ◀ 99.999.999 ▶ ...

• ... < 900.000.000 b ...

5. En cada número, escribe el valor en unidades de las cifras 2.

• 109.245.720

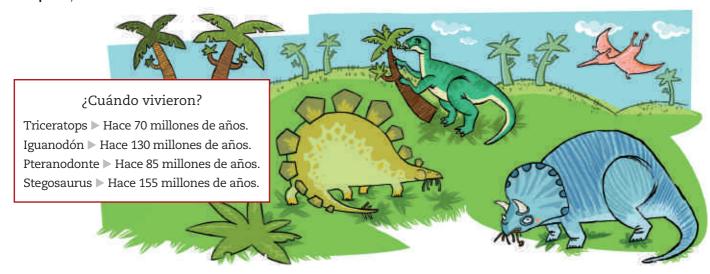
728.301.299

502.382.142250.226.000

6. Compara los números y escribe el signo correspondiente.

2.496.551 () 2.473.890

9.720.346 10.302.615


18.396.522 18.397.282

56.076.328 0 58.029.460

347.000.500 346.993.600

621.950.384 73.692.184

7. Escribe con cifras los números y ordénalos de mayor a menor. Después, contesta.

- ¿Qué dinosaurio vivió hace más tiempo: el Stegosaurus o el Iguanodón?
- ¿Qué dinosaurios vivieron hace menos de 100.000.000 de años?
- ¿Cuántos años vivió el Pteranodonte antes que el Triceratops?

8. Escribe dos números que cumplan cada condición.

- Mayores que 259.700.000 y menores que doscientos sesenta millones.
- Sus cifras 5 valen 50.000.000, 500.000, 5.000 y 50 unidades.

CÁLCULO MENTAL

Calcula sumas y restas sin paréntesis

$$6-2+1=4+1=5$$

$$5 + 6 - 3$$

$$10 + 70 - 20$$

$$4 + 7 + 9$$

$$4 + 7 + 9$$
 $90 - 30 - 40$

$$8 - 1 - 6$$

$$8 - 1 - 6$$
 $40 + 50 + 60$

Operaciones combinadas

Al resolver operaciones combinadas, es necesario seguir este orden al operar:

- 1.º Calcula las operaciones que hay dentro de los paréntesis.
- 2.º Calcula las multiplicaciones y divisiones en el orden en que aparecen.
- 3.º Calcula las sumas y restas en el orden en que aparecen.

Por ejemplo:

$$5 + 6 : (7 - 4) = 5 + 6 : 3 = 5 + 2 = 7$$

$$36:4-3\times2+8=9-3\times2+8=9-6+8=3+8=11$$

Al hacer operaciones combinadas, primero calculamos los paréntesis, después las multiplicaciones y divisiones y por último las sumas y restas.

1. Subraya la operación que tienes que hacer primero. Después, calcula.

• 2 × 9 : 3 = ...
$$\bigcirc$$
 ... = ...

•
$$15 - (7 + 2) = \dots \bigcirc \dots = \dots$$

2. Calcula.

RECUERDA

- 1.º Paréntesis.
- 2.º Multiplicaciones y divisiones.
- 3.° Sumas y restas.

$$10 - 4 \times 2$$

$$(10 - 4) \times 2$$

$$5 + (8 - 2) : 2$$

$$9 - 2 \times 4 + 6$$

$$(9-2) \times 4 + 6$$

$$8 + 12 : 4$$

$$10:5 \times 3$$

$$2 \times (6 + 9)$$

$$24 - 2 \times (7 + 3)$$

$$(10-4)+18:6$$

$$12:3+5\times 8$$

$$6 - 5 + 4 \times 2 - 7$$

$$9 + 8 : 4 - (1 + 3)$$

$$(4 + 2) \times 5 + (8 - 6)$$

3. Coloca los paréntesis necesarios para que las igualdades sean ciertas.

$$9 - 2 + 4 = 3$$

$$-2+4=3$$
 • 8 + 6 : 2 = 7

$$\bullet$$
 10 - 2 - 4 + 3 = 1

$$3 + 5 \times 6 = 48$$

$$9 - 7 - 4 = 6$$

5
$$\times$$
 7 3 $+$ 8 28

4. Calcula cada operación combinada y relaciónala con su frase correspondiente.

HAZLO ASÍ

8 - (5 - 2)

$$8 - 5 - 2$$

$$8-5-2=1$$
 A 8 le resto 5 y al resultado le resto 2.

$$8 - (5 - 2) = 5$$
 A 8 le resto la diferencia de 5 y 2.

$$-8-5+2$$

•
$$(8 + 5) \times 2$$

- Multiplico 8 por la diferencia de 5 y 2.
- 5. Resuelve estos problemas. Después, escribe en una sola expresión todas las operaciones que hayas hecho.
 - Un camión llevaba 168 kg de fruta. En un mercado descargó 24 cajas de 3 kg de fruta cada una. ¿Cuántos kilos de fruta lleva ahora el camión?
 - Andrés compró un pantalón por 18 € y una sudadera por 14 €. Pagó con un billete de 50 €. ¿Cuánto dinero le devolvieron?
 - Rocío tiene una bandeja con 35 pasteles de crema y 61 de chocolate. Quiere repartirlos en partes iguales en 8 platos. ¿Cuántos pasteles pondrá en cada plato?

6. RAZONAMIENTO. Piensa e indica si obtienes o no el mismo resultado.

Calculas el doble de un número y después le sumas otro número.

Calculas el doble de la suma de esos dos números.

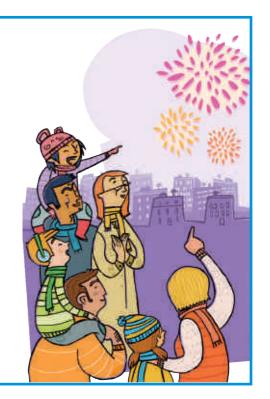
Pon un ejemplo que explique tu respuesta.

Problemas de varias operaciones

Patricia va con su familia a un espectáculo de luz y sonido. Ha sacado 3 entradas infantiles a 12 € cada una y 4 entradas de adulto. Ha entregado para pagar 150 € y le han devuelto 22 €.

¿Cuánto le ha costado cada entrada de adulto?

Patricia averigua cuánto dinero le han costado las siguientes entradas:


1.° Todas las entradas en total. \triangleright 150 - 22 = 128

2.° Las 3 entradas infantiles. \triangleright 3 \times 12 = 36

3.° Las 4 entradas de adulto. \triangleright 128 - 36 = 92

4.° Cada entrada de adulto. \triangleright 92 : 4 = 23

Cada entrada de adulto le ha costado 23 €.

1. Lee y explica qué pasos tienes que seguir para resolver el problema.

María tiene 12 años. Su hermano Diego tiene 3 años más que ella; su padre tiene el triple de años que Diego y su madre tiene 5 años menos que su padre. ¿Cuántos años tiene la madre de María?

Escribe las operaciones calculadas en una sola expresión.

$$(\dots + \dots) \times \dots - \dots = \dots$$

2. Observa el gráfico y resuelve.

En este pictograma se ha representado el número de helados que ha vendido un puesto desde el lunes hasta el viernes de una semana.

- ¿Cuántos helados vendió el puesto esa semana?
- La mitad de los helados que vendieron el martes y un tercio de los que vendieron el miércoles eran de chocolate. ¿Cuántos helados de chocolate vendieron en total el martes y el miércoles?
- Cada helado cuesta 2 €. ¿Cuánto dinero recaudaron el viernes más que el jueves?
- El sábado vendieron el doble que el lunes y el miércoles juntos. ¿Cuántos helados vendieron el sábado?

3. Resuelve.

- Una exposición de arte abre al público 290 días al año. Cada día, la visitan 15 grupos de 27 personas cada uno. ¿Cuántas personas visitan al año la exposición?
- En una carrera se reparte un total de 2.130 € en premios. El ganador del primer premio recibe la mitad de dicha cantidad, el del segundo gana un tercio del total y el del tercero se lleva el resto. ¿Cuánto dinero recibe el ganador del tercer premio?
- En una granja tienen que envasar 5.934 huevos. Utilizan 280 cajas de 12 huevos cada una y el resto lo envasan en cajas de 24 huevos. ¿Cuántas cajas de 24 huevos llenan y cuántos huevos les sobran?
- Nicolás trabaja en una obra colocando azulejos. Para las paredes de una cocina, tenía 21 cajas con 24 azulejos blancos cada una y 9 cajas con 6 azulejos de flores y 8 de hojas. Al final, le han sobrado 34. ¿Cuántos azulejos ha utilizado?

4. Busca los datos necesarios en la tabla y resuelve.

En la tienda de Joaquín han recibido hoy un lote con material.

	Había en tienda	Han recibido	Han vendido	Precio de venta
Camisetas	87	432	53	12 €
Pantalones	53	207	29	30 €
Vestidos	26	180	13	45 €

- ¿Cuántas camisetas y pantalones quedan en total en la tienda al cerrar por la tarde?
- ¿Cuánto dinero ha obtenido hoy Joaquín por la venta de los vestidos? ¿Cuánto podría haber obtenido si hubiera vendido todos los vestidos que tenía?
- El lote recibido consistía en cajas de 36 camisetas, cajas de 23 pantalones y cajas de 18 vestidos. ¿Cuántas cajas contenía en total el lote?
- Un cliente compra 5 pantalones y varias camisetas. Ha pagado 390 €. ¿Cuántas camisetas ha comprado?

CÁLCULO MENTAL

Calcula sumas y restas con paréntesis

$$6 - (2 + 1) = 6 - 3 = 3$$

$$7 - (8 - 3)$$

$$7 - (8 - 3)$$
 $80 - (50 + 10)$

$$(700 - 300) + 200$$

$$4 + (7 + 2)$$

$$(90 - 40) - 20$$

$$4 + (7 + 2)$$
 $(90 - 40) - 20$ $600 - (200 - 100)$

$$(9-1)-5$$

$$(9-1)-5$$
 $40+(50+60)$

$$(800 + 400) + 600$$

Actividades

- 1. Descompón cada número y escribe cómo se lee.
 - 70.421
- 39.210.008
- 682.093
- 265.074.300
- **2.407.516**
- 823.609.050
- 2. Escribe con cifras estos números.
 - Cuarenta y cinco millones treinta mil doscientos siete.
 - Tres millones quinientos catorce mil ochenta.
 - Seiscientos veintisiete millones ciento sesenta y tres mil.
 - Trescientos millones dos mil cien.
 - Setenta y nueve millones trescientos mil cuatrocientos noventa y uno.
- 3. Escribe el valor en unidades de la cifra 3 en cada número de la actividad 2.
- 4. Observa el número de habitantes de estas ciudades y contesta.

- ¿Cuál de estas ciudades es la más poblada? ¿Y la menos poblada?
- ¿Cuántos habitantes tiene Bombay más que Buenos Aires?

5. ESTUDIO EFICAZ. Copia y completa el esquema.

ORDEN EN LAS OPERACIONES COMBINADAS

-1.° Calcular los...

– 2.° ...

- 3.° ...

6. Calcula.

$$\bullet$$
 16 - 7 + (9 - 3)

•
$$(5 + 4) \times (6 - 1)$$

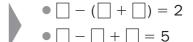
18: (7 + 2)

•
$$14 - 4 \times 3 + 7$$

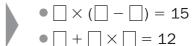
• $9 - (5 + 13) : 6$

7. Elige una de las siguientes opciones, expresa numéricamente cada frase y calcula.

b.
$$\square \times \square + \square$$
 e. $\square \times (\square + \square)$


$$e. \square \times (\square + \square)$$

A 15 le resto la suma de 6 y 4.


▶ d.
$$15 - (6 + 4) = ...$$

- A 7 le resto 2 y luego le sumo 5.
- Multiplico 10 por la suma de 5 y 2.
- Divido 12 entre la diferencia de 7 y 4.
- Al doble de 8 le sumo 3.
- A la mitad de 14 le resto 5.
- 8. Escribe los números en su lugar para que las dos expresiones sean ciertas.

- 9. Resuelve cada problema de dos formas distintas. Escribe todas las operaciones en una sola expresión.
 - En una panadería han cocido por la mañana 268 barras y han vendido 195.
 Por la tarde, han cocido 120 y han vendido 87. ¿Cuántas barras cocidas han quedado sin vender?

Sin paréntesis ▶ ...

Con paréntesis ▶ ...

 Un tren sale de la estación con 186 viajeros. En el trayecto hace dos paradas: en la primera, bajan 64 personas y suben 59, y en la segunda parada bajan 39 y suben 78. ¿Cuántos viajeros hay en el tren al final del trayecto?

Sin paréntesis ▶ ...

Con paréntesis ▶ ...

10. Resuelve.

- Un camión puede cargar un máximo de 19.000 kg. Se han cargado en él 98 cajas de 70 kg y 25 cajas de 105 kg. ¿Cuántos kilos más pueden cargarse aún en el camión?
- Loreto tenía guardadas en su ordenador 13.062 fotografías. Hoy ha borrado 297 y ha metido 451 nuevas. Después ha copiado las fotos en varios CD, grabando 275 en cada uno. ¿Cuántos CD ha necesitado? ¿Cuántas fotos ha copiado en el CD incompleto?
- Román y Pilar se han ido este verano de viaje. El avión de ida y vuelta les ha costado 145 € a cada uno y la estancia en el hotel en habitación doble, 87 € al día. En total han tenido que pagar 1.073 €. ¿Cuántos días han estado de viaje?

ERES CAPAZ DE...

Saber cuándo es rentable un abono

En el polideportivo municipal han abierto una piscina. Se puede ir a nadar pagando cada día una entrada diaria, pero las personas que van a menudo tienen otras opciones más baratas como sacar bonos de 10 días, sacar abonos mensuales o sacar un abono anual.

- Observa los precios de cada opción y calcula:
 - ¿Cuántos días hay que ir como mínimo para que resulte más barato sacar un bono de 10 días que sacar entradas diarias?
 - ¿Y para que resulte más barato sacar un abono mensual que entradas diarias? ¿Y para que resulte más barato sacar un abono anual?
- Explica qué opción aconsejarías a cada persona:
 - Raquel va a ir a la piscina 8 días.
 - Fran quiere ir 15 días este mes.
 - Juancho piensa ir 2 veces a la semana durante todo el año.

Solución de problemas

Pasos para resolver un problema

Resuelve siempre los problemas siguiendo estos pasos.

Pedro compró una lavadora que costaba 579 €. Pagó con dos billetes de 200 €, uno de 100 € y cinco billetes de 20 €. ¿Cuánto le devolvieron?

COMPRENDE.

Pregunta ▶ ¿Cuánto le devolvieron?

Datos ▶ La lavadora costaba 579 €. Pagó con 2 billetes de 200 €, 1 de 100 € y 5 de 20 €.

PIENSA.

- 1.º Hay que hallar cuánto dinero entregó Pedro. Multiplicamos el valor de cada billete por el número de ellos que entregó y sumamos.
- 2.º Hay que hallar el dinero que le devolvieron. Restamos al dinero entregado el precio de la lavadora.

CALCULA.

$$1.^{\circ} 2 \times 200 + 1 \times 100 + 5 \times 20 = 400 + 100 + 100 = 600$$

 $2.^{\circ} 600 - 579 = 21$

Solución: Le devolvieron 21 €.

COMPRUEBA.

579 + 21 = 600 ▶ El precio de la lavadora más las vueltas da el dinero entregado.

- 1. En un concesionario de coches, los todoterrenos valían 26.500 € y las furgonetas 19.750 €. Tras rebajar el precio de cada vehículo 2.150 €, vendieron en una semana dos todoterrenos y una furgoneta. ¿Cuánto obtuvieron por esa venta?
- 2. Una empresa llevó a comer a sus 12 empleados en un minibús. En alquilar el minibús gastó 300 € y en la comida gastó 420 € más que en el transporte. ¿Cuánto pagó la empresa por cada empleado en total?
- 3. Juan tiene 5 años, su padre tiene 24 años más que él y su abuelo tiene el doble de años que su padre. ¿Cuántos años tiene su abuelo?
- **4. INVENTA.** Escribe un problema y pide a tu compañero que lo resuelva siguiendo los cuatro pasos.

EJERCICIOS

- 1. Descompón estos números.
 - 540.123
- 939.126.545
- **1.700.902**
- 160.302.090
- **8.057.021**
- **802.004.600**
- 2. Escribe cómo se lee cada número de la actividad anterior.
- 3. Escribe con cifras.
 - Cuatrocientos mil novecientos setenta y ocho.
 - Dos millones ciento seis mil cuatro.
 - Cinco millones setenta y seis.
 - Veintinueve millones cuatrocientos treinta y dos mil.
 - Ochenta millones diez mil trece.
 - Quinientos seis millones doscientos seis mil noventa y ocho.
 - Seiscientos millones cien mil dos.
- 4. Calcula.
 - 25.089 + 23.658
 - 176.765 + 29.106 + 8.394
 - 47.912 6.965
 - 276.091 9.876
- 5. Multiplica.
 - 375 × 189
- 1.689 × 470
- 286 × 305
- 2.741 × 900

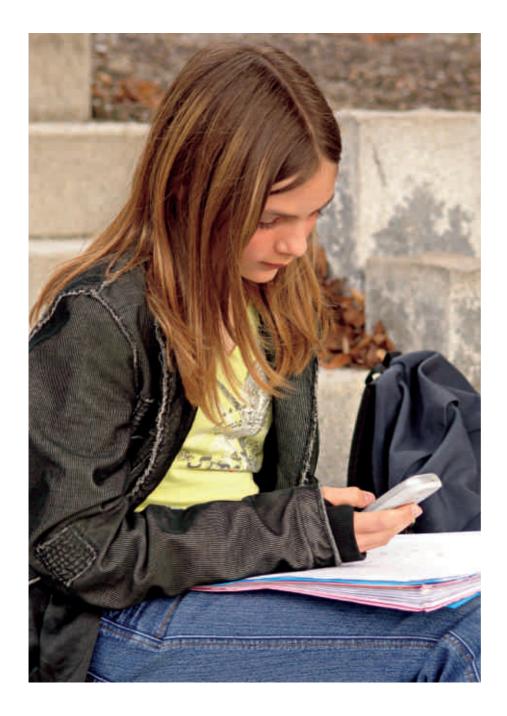
- 6. Divide.
 - 9.760:36
- 4.711:314
- **3.420:38**
- **38.304**: 126
- 7. ESTUDIO EFICAZ. Revisa las divisiones que has hecho en la actividad 6. ¿Coinciden tus resultados con los de tu compañero?

PROBLEMAS

- 8. En un tren caben 305 pasajeros. Hay 225 plazas de clase turista y 4 vagones iguales de primera clase. ¿Cuántas plazas tiene cada vagón de primera clase?
- 9. Marcos compró 150 kg de manzanas a 2 € el kilo. Al ir a venderlas, tiró 17 kg que estaban estropeados y vendió el resto a 10 € el kilo. ¿Cuánto dinero ganó en la venta?
- **10.** Luisa ha conseguido en un videojuego 3 varitas mágicas y José ha conseguido 4 cofres y 5 coronas.

150 puntos

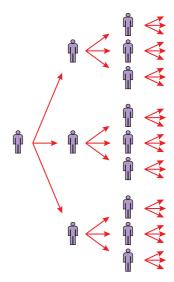
415 puntos


180 puntos

¿Quién ha conseguido más puntos? ¿Cuántos más?

- **11.** Elena compró 4 billetes de avión en una agencia de viajes. Pagó 603 € en total por los billetes y por la gestión. Cada billete costaba 150 €. ¿Cuánto pagó Elena por la gestión?
- 12. Un grupo de 28 amigos quiere cruzar un lago. La mitad lo harán en barcas de 2 plazas y el resto en barcas de 5 plazas.¿Cuántas barcas necesitarán?
- **13.** Félix fue al banco a cambiar dinero. Entregó 4 billetes de 50 € y 2 de 20 € y le dieron 40 monedas de 1 € y el resto en monedas de 2 €. ¿Cuántas monedas de 2 € le dieron?
- **14.** En una fábrica envasan cada hora 520 ℓ de refresco de naranja y 780 ℓ de limón en botellas de 2 litros. ¿Cuántas botellas llenan en 8 horas de trabajo?

2


Potencias y raíz cuadrada

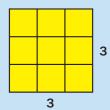
Silvia envía este mensaje a 3 personas en 1 minuto:

Cada persona que recibe el mensaje lo reenvía a otras 3 personas distintas en 1 minuto. ¡Fíjate a cuántas personas llega el mensaje!

• Calcula cuántas personas reciben el mensaje cada minuto.

1.er minuto	2.° minuto	3.er minuto	4.º minuto	5.° minuto
3	$3 \times 3 =$	$3 \times 3 \times 3 =$		

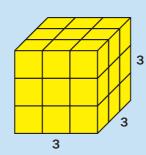
- Calcula cuántas personas conocen el mensaje al cabo de 5 minutos.
- Piensa y opina. ¿Te parece que Silvia consiguió trasmitir el mensaje a muchas personas en poco tiempo? ¿Se te ocurre otra forma de hacerlo?


RECUERDA LO QUE SABES

Producto de factores iguales

factores producto
$$8 \times 8 = 64$$

Cuadrados y cubos


¿Cuántos cuadrados hay?

$$3 \times 3 = 9$$

Hay 9 cuadrados.

¿Cuántos cubos hay?

 $3 \times 3 \times 3 = 27$

Hay 27 cubos.

1. Completa la tabla.

Producto	Resultado	Factor que se repite	Veces que se repite
2 × 2			
$2 \times 2 \times 2$			
$2 \times 2 \times 2 \times 2$			
6 × 6			
$6 \times 6 \times 6$			
10 × 10 × 10			
10 × 10 × 10 × 10			

2. Calcula cuántos cuadrados o cubos hay.

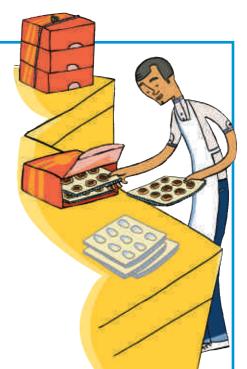
... cuadrados

... cubos

VAS A APRENDER

- A escribir productos de factores iguales en forma de potencia.
- A leer, escribir y calcular el valor de una potencia.
- A escribir e interpretar la expresión polinómica de un número.
- A calcular la raíz cuadrada del cuadrado de un número hasta el 10.
- A resolver problemas calculando una potencia o una raíz cuadrada exacta.

Potencias


Andrés está envasando los dulces.

En cada bandeja pone 3 filas de 3 dulces cada una. En cada caja pone 3 bandejas y después hace paquetes de 3 cajas. ¿Cuántos dulces habrá en cada paquete?

Número de dulces en cada bandeja \triangleright 3 \times 3 = 9 Número de dulces en cada caja \blacktriangleright 3 \times 3 \times 3 = 27 Número de dulces en cada paquete \rightarrow 3 \times 3 \times 3 \times 3 = 81

En cada paquete habrá 81 dulces.

Fíjate: los productos anteriores tienen todos los factores iguales. Estos productos se pueden escribir en forma de potencia. Las potencias están formadas por una base y un exponente.

Potencia

 $3 \times 3 = 3^2$ **Exponente**: número de veces que se repite el factor. **Base**: factor que se repite.

$$3 \times 3 \times 3 = 3^3$$

$$3 \times 3 \times 3 \times 3 = 3^4$$

Las potencias anteriores se leen así:

 $3^2 \triangleright 3$ al cuadrado o $3^3 \triangleright 3$ al cubo o $3^4 \triangleright 3$ a la cuarta o 3 elevado a 2. 3 elevado a 3. 3 elevado a 4.

Una potencia es un producto de factores iguales.

El factor que se repite se llama base y el número de veces que se repite se llama exponente.

1. Escribe cada producto en forma de potencia y contesta.

 6×6

 $4 \times 4 \times 4$ $7 \times 7 \times 7 \times 7$

 $2\times2\times2\times2\times2\times2$

 9×9

 $8 \times 8 \times 8$

 $3 \times 3 \times 3 \times 3 \times 3$

 $5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5$

- ¿Cuál es la base de la potencia? ¿Y el exponente?
- ¿Cómo se lee la potencia?

2. Escribe en forma de producto y calcula su valor.

Ejemplo:

4²

 \bullet 5³

• 6⁴

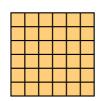
 $8^4 = 8 \times 8 \times 8 \times 8 = 4.096$

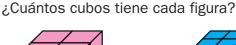
• 7²

• 9³

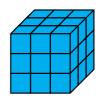
• 2⁵

3. Escribe la potencia con cifras y calcula su valor.

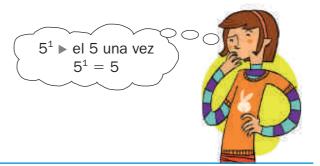

- Ocho al cuadrado \triangleright 8² = ...
- Siete al cubo ▶ ...


- Cinco a la cuarta ▶ ...
- Diez elevado a 5 ▶ ...

4. Escribe en forma de potencia y calcula.


¿Cuántos cuadrados tiene cada figura?

5. Calcula el valor del cuadrado y el cubo de los números hasta el 10.


Cuadrados	1 ²	2 ²	3 ²	4 ²	5 ²	6 ²	7 ²	8 ²	9 ²	10 ²
Cubos	1 ³	2 ³	3 ³	43	5 ³	6 ³	7 ³	8 ³	9 ³	10³

6. Escribe la operación en forma de potencia y resuelve.

- En una juguetería hay 6 cajas. En cada caja hay 6 bolsas, con 6 marionetas en cada bolsa. ¿Cuántas marionetas hay en total en la juguetería?
- En una pastelería hay 2 mostradores con 2 bandejas en cada mostrador. En cada bandeja hay 2 bizcochos, partidos en 2 trozos cada uno. Cada trozo de bizcocho tiene 2 fresas. ¿Cuántas fresas hay en total?
- De un almacén han salido 4 furgonetas, con 4 percheros cada una. Cada perchero tiene 4 perchas y en cada percha hay 4 pantalones. ¿Cuántos pantalones han salido en total del almacén?

7. Piensa y contesta.

- ¿Es lo mismo 2⁵ que 5²?
- ¿Cuál es el valor de una potencia de base 1? ¿Y de una potencia de base 0?
- ¿Cuál es el valor de una potencia cuyo exponente es 1?

CÁLCULO MENTAL

Calcula operaciones combinadas sin paréntesis

$$2 + 3 \times 5 = 2 + 15 = 17$$

$$9-2\times4$$

$$9-2\times 4$$
 $80+9:3$

$$8 - 1 - 5$$

$$8 - 1 - 5$$
 $4 \times 20 - 30$

$$70 - 3 \times 20$$

$$3 \times 4:6$$

$$70 - 30 - 5$$

Potencias de base 10

Paloma ha calculado varias potencias de base 10.

$$10^1 = 10$$

$$10^2 = 10 \times 10 = 100$$

$$10^3 = 10 \times 10 \times 10 = 1.000$$

$$10^4 = 10 \times 10 \times 10 \times 10 = 10.000$$

Una potencia de base 10 es igual a la unidad seguida de tantos ceros como indica el exponente.

1. Observa cada potencia y responde. Después, escribe su valor.

 10^{2}

$$10^{4}$$

 10^{5}

$$10^{1}$$

 10^{3}

 10^{6}

- ¿Cuál es el exponente de la potencia?
- ¿Cuántos ceros tienes que escribir tras el 1?
- 2. Escribe cada número como una potencia de base 10.

1.000

100,000

10

10.000.000

1.000.000

100

10.000

100.000.000

3. Escribe cada número utilizando una potencia de base 10.

Eigenplo: $7.000 = 7 \times 1.000 = 7 \times 10^3$

Eigenplo: $5.300 = 53 \times 100 = 53 \times 10^2$

80

90.000

640

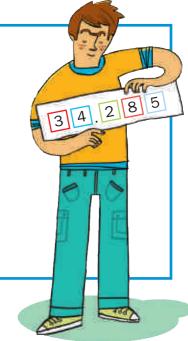
392.000

600 2.000 400,000 3.000.000 2.700 91.000 4.580.000 56.300.000

4. Observa el ejemplo y completa la tabla escribiendo la distancia media de cada planeta al Sol utilizando potencias de base 10.

Planeta	Distancia media al Sol en kilómetros	Distancia utilizando potencias de base 10	* ***
Mercurio	57.870.000	$5.787 \times 10.000 = 5.787 \times 10^4$	16 00 4
Venus	108.140.000		*
Tierra	149.500.000		
Marte	227.900.000		
Júpiter	778.300.000		

Expresión polinómica de un número


Miguel ha escrito el número 34.285 utilizando potencias de base 10.

Esta forma de escribirlo se llama expresión polinómica del número 34.285.

$$34.285 = 30.000 + 4.000 + 200 + 80 + 5$$

$$34.285 = 3 \times 10.000 + 4 \times 1.000 + 2 \times 100 + 8 \times 10 + 5$$

$$34.285 = 3 \times 10^{4} + 4 \times 10^{3} + 2 \times 10^{2} + 8 \times 10 + 5$$

- 1. Descompón cada número y escribe su expresión polinómica.
 - Eiemplo: $7.406 = 7.000 + 400 + 6 = 7 \times 10^3 + 4 \times 10^2 + 6$
 - 564

- 60.342
- 3.090.800

- **3.798**
- 89.071
- 70.250.230

- 8.250
- 209.506
- 901.600.000

2. Escribe cada número.

•
$$6 \times 10^5 + 2 \times 10^4 + 9 \times 10^2 + 3 \times 10 + 7$$

• $\sqrt{}$ • \sqrt

$$\bullet$$
 5 × 10³ + 7 × 10² + 8

$$\bullet$$
 3 × 10⁴ + 2 × 10³ + 6 × 10²

$$\bullet$$
 4 \times 10⁵ + 9 \times 10⁴ + 10²

$$\bullet$$
 2 × 10⁶ + 5 × 10⁴ + 8 × 10³ + Δ

$$\bullet$$
 7 × 10⁶ + 8 × 10⁵ + 3 × 10² + 9

$$\bullet$$
 3 × 10⁷ + 7 × 10⁶ + 10⁵ + 9 × 10³

$$\bullet$$
 4 × 10⁸ + 8 × 10⁷ + 7 × 10⁶ + 3 × 10⁴

$$\bullet$$
 2 × 10⁶ + 5 × 10⁴ + 8 × 10³ + 4 \bullet 2 × 10⁸ + 10⁷ + 5 × 10⁵ + 9 × 10³

3. RAZONAMIENTO. Responde sin calcular: ¿cuál de los dos números de cada pareja es mayor? ¿Por qué?

$$3 \times 10^5$$
 $10^3 + 2 \times 10^2 + 7 \times 10 + 8$

Ahora escribe los números, compáralos y comprueba tus respuestas.

Raíz cuadrada

Alberto y Raquel han hecho un tablero para jugar a tres en raya. Han dividido un cuadrado en 9 casillas iguales. ¿Cuántas casillas tiene cada lado?

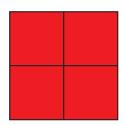
Como el cuadrado tiene el mismo número de casillas en cada lado, han buscado el número que multiplicado por sí mismo da 9, es decir, el número cuyo cuadrado es 9.

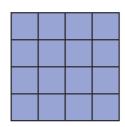
Este número se llama **raíz cuadrada** de 9 y se escribe $\sqrt{9}$.

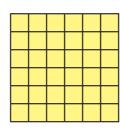
$$1 \times 1 = 1^2 = 1$$

$$2 \times 2 = 2^2 = 4$$

$$3 \times 3 = 3^2 = 9 \quad \triangleright \quad \sqrt{9} = 3$$


La raíz cuadrada de 9 es 3.


El cuadrado tiene 9 casillas. Cada lado tiene 3 casillas.



La raíz cuadrada de un número es otro número que, elevado al cuadrado, es igual al primero.

1. Observa y completa para cada cuadrado.

- Cada lado tiene ... casillas. En total hay ... casillas.
- El cuadrado de ... es ... La raíz cuadrada de ... es ... $\dots^2 = \dots \blacktriangleright \sqrt{\dots} = \dots$

2. Calcula los cuadrados y completa las raíces.

$$5^2 = \dots \triangleright \sqrt{25} = \dots$$

$$9^2 = ... \triangleright \sqrt{...} = ...$$

$$7^2 = \dots \blacktriangleright \sqrt{\dots} = \dots$$

$$10^2 = \dots \triangleright \sqrt{\dots} = \dots$$

$$7^2 = \dots \triangleright \sqrt{\dots} = \dots$$
 $8^2 = \dots \triangleright \sqrt{\dots} = \dots$ $10^2 = \dots \triangleright \sqrt{\dots} = \dots$ $11^2 = \dots \triangleright \sqrt{\dots} = \dots$

3. Calcula y explica por qué.

$$\sqrt{16} = ...$$
 porque 4² es 16.

$$\sqrt{1} = \dots$$
 porque ... es ...

$$\sqrt{64} = \dots$$
 porque \dots es \dots

$$\sqrt{36}$$
 = ... porque ... es ...

$$\sqrt{49}$$
 = ... porque ... es ...

$$\sqrt{100} = \dots$$
 porque ... es ...

4. Resuelve.

- Ana está haciendo un mosaico cuadrado con 25 azulejos cuadrados iguales. ¿Cuántos azulejos pondrá en cada lado del mosaico?
- Roberto tiene una caja con 16 bombones, colocados formando un cuadrado. ¿Cuántas filas de bombones hay? ¿Y cuántos bombones tiene cada fila?
- Cristina y Sergio juegan a los barcos dibujando en una hoja cuadriculada un cuadrado de 49 casillas. ¿Cuántas casillas tiene cada lado del cuadrado?
- Los tableros de ajedrez son cuadrados y tienen 64 casillas iguales. ¿Cuántas casillas hay en cada fila? ¿Y en cada columna?
- 5. La raíz cuadrada de los siguientes números no es exacta. Calcula entre qué dos números consecutivos está.

HAZLO ASÍ

 $\sqrt{30}$ No hay ningún número que elevado al cuadrado sea 30.

$$5^2 = 25$$
; $25 < 30$
 $6^2 = 36$; $36 > 30$ $5^2 < 30 < 6^2$

La raíz cuadrada de 30 es mayor que 5 y menor que 6.

$$5<\sqrt{30}<6$$

$$... < \sqrt{10} < ...$$
 $... < \sqrt{24} < ...$ $... < \sqrt{45} < ...$

$$... < \sqrt{45} < ...$$

$$... < \sqrt{50} < ...$$

$$1.00 < \sqrt{75} < 1.00$$

$$... < \sqrt{75} < ...$$
 $... < \sqrt{90} < ...$

6. Piensa si tienes que calcular el cuadrado o la raíz cuadrada y contesta.

Paula y Antonio tienen que enlosar dos patios con baldosas cuadradas. Los dos patios son cuadrados.

- Paula pone 9 baldosas en cada lado del patio. ¿Cuántas baldosas necesita para cubrir todo el suelo?
- Antonio pone en total 36 baldosas. ¿Cuántas baldosas ha puesto en cada fila? ¿Cuántas filas ha hecho?

CÁLCULO MENTAL

Calcula operaciones combinadas con paréntesis

$$9-2 \times (\overline{3+1}) = 9 - \underline{2 \times 4} = 9 - 8 = 1$$

$$9 \times (2 + 5)$$

$$(30 + 50) : 10$$

$$7 - (6 - 4)$$

$$7 - (6 - 4)$$
 $2 \times (40 - 20)$

$$(8 - 2) \times 9$$

Actividades

1. Copia y relaciona.

$$2+2+2$$
$$2\times2\times2$$

$$2 \times 3$$

6

2³

2. ESTUDIO EFICAZ. Contesta y pon un ejemplo.

- ¿Qué es una potencia?
- ¿Qué indica la base de una potencia? ¿Y el exponente?
- ¿Cómo se llaman las potencias cuyo exponente es 2? ¿Y las potencias cuyo exponente es 3?

3. Expresa cada producto en forma de potencia y escribe cómo se lee.

- 9 × 9 × 9 × 9
- 3 × 3 × 3 × 3 × 3 × 3
- 10 × 10
- \bullet 6 × 6 × 6 × 6 × 6
- 8 × 8 × 8
- \bullet 4 × 4 × 4 × 4 × 4 × 4
- \bullet 5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5

4. Calcula.

- 11² • 6³
- 2⁷
- 4⁵

- 3⁶
- 1⁹
- 10⁴
- 10⁸

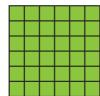
5. Escribe la potencia y calcula.

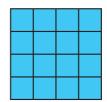
- Nueve al cuadrado
- Ocho al cubo
- Dos a la sexta
- Tres a la guinta
- Cinco elevado a 4
- Uno elevado a 8
- Diez elevado a 7

una potencia de base 10. 10.000.000

6. Expresa cada número utilizando

- Cien Cien mil Un millón Mil
- 68.000 • 700 500.000 340.500 4.000.000 9.120.000


7. Escribe la expresión polinómica de cada número.


- 4.385
- **3.051.400**
- 72.930
- 60.209.000
- **290.601**
- 854.007.003

8. Escribe el número.

- \bullet 5 × 10⁴ + 2 × 10³ + 7 × 10² + 10 + 6
- \bullet 3 × 10⁵ + 9 × 10⁴ + 8 × 10² + 5 × 10
- \bullet 4 × 10⁶ + 10⁵ + 6 × 10³ + 9 × 10²
- \bullet 10⁸ + 2 × 10⁷ + 5 × 10⁶ + 2 × 10⁵

9. Observa cada dibujo y completa.

- El cuadrado de ... es ...
- La raíz cuadrada de ... es ...

10. Calcula y explica por qué.

- $\sqrt{9}$
- $\sqrt{64}$
- \sqrt{1}
- √25

- √49
- √81
- $\sqrt{4}$
- $\sqrt{100}$

11. Calcula entre qué dos números está la raíz cuadrada de cada número.

- ... < √12 < ...
- ... $< \sqrt{56} < ...$
- ... $< \sqrt{30} < ...$... $< \sqrt{70} < ...$

- 12. Escribe 4 términos más de cada serie.

 Después, escribe cada término en forma de potencia.
 - Multiplica por 2 cada vez:

• Multiplica por 5 cada vez:

5, 25, ..., ..., ..., ... **v v v v v v v s** 5¹, 5², ..., ..., ..., ..., ...

13. Piensa y contesta.

Pablo tiene 8 dados iguales. Quiere formar con ellos un cuadrado o un cubo, de manera que no le sobren ni le falten dados.

¿Puede formar un cuadrado? ¿Y un cubo?

14. Resuelve.

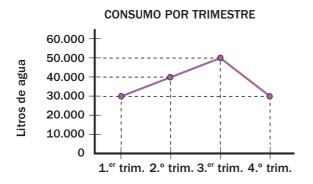
- Ester se ha inventado una sopa de letras con 9 filas de 9 letras cada una. ¿Cuántas letras ha escrito en total Ester?
- En el despacho de un cerrajero hay un armario que tiene 7 filas con 7 llaveros en cada fila. Cada llavero tiene 7 llaves. ¿Cuántas llaves hay en el armario?
- Un edificio tiene 4 pisos. En cada piso hay 4 casas, con 4 ventanas a la calle en cada una. Cada ventana tiene 4 macetas con 4 flores cada una. ¿Cuántas flores hay en total en las ventanas del edificio?
- Elsa ha hecho un rompecabezas de 36 piezas, formando un cuadrado.
 ¿Cuántas piezas ha colocado Elsa en cada lado del cuadrado?

ERES CAPAZ DE...

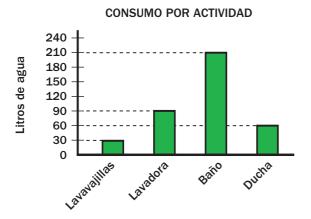
Elegir una caja

Alex, Inés y Santi coleccionan minerales. Quieren comprar una caja para guardarlos. ¿Qué tamaño de caja elegirá cada uno?

- ¿Quiénes pueden comprar una caja y llenarla sin que les sobre ningún mineral?
 ¿Qué caja comprará cada uno de ellos?
- ¿Qué caja comprará Inés?
 ¿Cuántos huecos vacíos le quedarán?
- Si tú tuvieras 32 minerales, ¿qué caja comprarías?
 ¿Cuántos minerales más podrías guardar en ella?


Solución de problemas

Buscar datos en varios gráficos


Busca los datos necesarios en los gráficos y resuelve.

El agua es un recurso muy escaso que debemos aprovechar. En el gráfico lineal se presenta la cantidad de agua en litros que ha consumido Miguel en un año.

En el gráfico de barras aparecen los litros consumidos en algunas actividades cotidianas.

- 1. ¿Cuántos litros de agua gastó Miguel en el segundo semestre del año más que en el primer semestre?
 - Litros en el segundo semestre: ...

 Litros en el primer semestre: ...

 Diferencia de litros: ...

Solución: Gastó ...

- 2. ¿Cuánto gastó Miguel cada mes suponiendo que todos los meses gastó los mismos litros de agua?
- 3. Durante una semana Miguel se duchó 5 veces y se bañó 2 veces. La semana siguiente se duchó 4 veces y se bañó 3 veces. ¿Qué semana gastó más agua? ¿Cuántos litros más?
- **4.** En el segundo trimestre del año Miguel puso el lavavajillas 60 veces y la lavadora 65 veces. ¿Cuántos litros de agua gastó en el resto de actividades?
- **5. INVENTA.** Escribe y resuelve un problema en el que uses algunos de los datos de los gráficos.

EJERCICIOS

- 1. Escribe el valor posicional de las cifras 5 de cada número.
 - 5.005.306
- **3.500.508**
- **32.154.675**
- 50.090.352
- 527.885.030
- 556.368.297

2. Escribe.

- El mayor número de siete cifras cuya cifra 7 valga 7.000.000 U.
- El menor número de ocho cifras cuya cifra 9 valga 90.000.000 U.
- El mayor número de nueve cifras cuya cifra 4 valga 40.000.000 U.
- 3. Ordena de menor a mayor cada grupo.
 - 2.019.704, 2.108.800, 2.020.101, 1.999.989, 2.200.006
 - 35.300.000, 35.125.348, 35.125.900, 34.989.586, 36.086.187

4. Escribe.

- El mayor número par de siete cifras.
- El menor número impar de ocho cifras.
- Un número de nueve cifras mayor que novecientos noventa millones doscientos treinta mil.

5. Calcula.

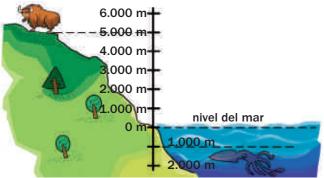
- 607.839 + 198.704
- 675 × 340
- 385.126 + 43.089
- 521 × 609
- 675.203 176.889
- 2.368:27
- 502.093 50.209
- **26.752:128**
- ESTUDIO EFICAZ. Explica en qué orden hay que hacer las operaciones de estas expresiones.
 - \bullet 4 + 2 × 3 1
- $5 \times 2 (4 1)$

7. Calcula.

- 6 × 2 − 7 + 4
- 7 − (6 − 2) − 1
- $9 (2 + 1) \times 3$
- $3 + 4 \times 5 9$
- 7 × 3 − 8 × 2
- $15 7 (2 \times 3)$
- \bullet 5 9:3 + 4
- 8 : (7 3) 1

PROBLEMAS

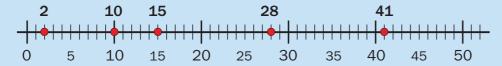
- 8. Una furgoneta transporta 30 cajas de naranjas. En 8 de las cajas lleva 20 kg en cada una y en el resto lleva 25 kg en cada una. ¿Cuántos kilos de naranjas transporta la furgoneta?
- 9. Marta cumple hoy los años.


Su hermano Lucas tiene 2 años más que ella y su padre el triple que su hermano. ¿Cuántos años le lleva su padre a Marta?

- 10. En un colegio han comprado para el equipo de fútbol 15 pantalones por 180 €.
 Cada camiseta ha costado 3 € más que un pantalón. ¿Cuánto ha costado el equipo de cada jugador?
- 11. María ha entregado para pagar una factura 7 billetes de 50 € y 4 de 20 €. Le han devuelto 3 monedas de 2 €. ¿Cuál era el precio de la factura?
- 12. De los 130 asistentes a una charla, 82 eran mujeres y el resto hombres. De los hombres, un tercio eran mayores de 65 años. ¿Cuántos hombres menores de 65 años fueron a la charla?

Números enteros

Leire está haciendo un trabajo sobre dos animales: el yak y el calamar gigante.

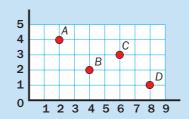

Uno de los datos que ha encontrado sobre estos animales es el lugar donde viven:

- El yak habita en las montañas del Tíbet, a unos 5.000 metros de altitud.
- El calamar gigante vive en el mar, a más de 1.000 metros de profundidad.
- Observa el esquema. Un animal que vive a 2.000 m de altitud, ¿vive por encima o por debajo del nivel del mar? ¿Y un animal que vive a 200 m de profundidad?
- Localiza en el esquema dónde vive cada animal y contesta.
 - ¿Qué animal vive más cerca del nivel del mar, el yak o el calamar gigante?
 - La vicuña vive en las mesetas de Sudamérica entre los 3.000 m y 4.500 m de altitud. ¿Vive la vicuña más cerca o más lejos del nivel del mar que el yak?
 - El pez espada vive en mares tropicales entre los 200 m y 800 m de profundidad. ¿Vive el pez espada más cerca o más lejos del nivel del mar que el calamar gigante?

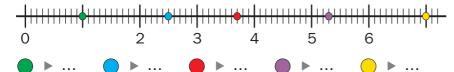
RECUERDA LO QUE SABES

Representación de números en la recta

Representación de números naturales.

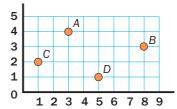


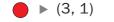
Representación de números decimales.



Coordenadas de un punto

Se escriben, separadas por una coma y entre paréntesis, primero la coordenada correspondiente al eje horizontal y luego la correspondiente al eje vertical.


1. Escribe los números representados en esta recta.


2. Copia la recta de la actividad 1 y representa en ella los siguientes números.

3. Escribe las coordenadas de cada punto.

$$C \triangleright (..., ...)$$
 $D \triangleright (..., ...)$

- 4. Dibuja unos ejes de coordenadas y representa los siguientes puntos.
 - **▶** (1, 3)

▶ (5, 4)

VAS A APRENDER

- A reconocer los números enteros positivos y negativos y a utilizarlos en situaciones cotidianas.
- A resolver problemas sencillos con números enteros.
- A representar y comparar números enteros.
- A identificar coordenadas y representar puntos en ejes cartesianos.

Los números enteros

Lucía vive en el segundo piso. Sube a su casa en ascensor.

Fíjate con qué número está indicado cada piso en el panel del ascensor:

- La planta baja donde está el portal está indicada con el número 0.
- Encima de la planta baja hay 4 plantas de viviendas, indicadas con los números +1, +2, +3 y +4.
- Debajo de la planta baja hay 2 plantas sótano, indicadas con los números -1 y -2.

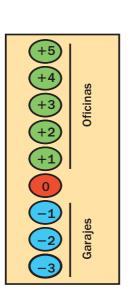
Todos estos números se llaman números enteros.

- Los números +1, +2, +3 y +4 son números enteros positivos.
 A veces se presentan sin el signo + (1, 2, 3...).
- Los números -1 y -2 son **números enteros negativos**.
- El número 0 es un número entero, pero no es positivo ni negativo.

Los números enteros pueden ser positivos (+1, +2, +3, +4, +5...), negativos (-1, -2, -3, -4, -5...) o cero.

1. Observa el esquema de los botones de un ascensor y explica.

Qué botón debes pulsar

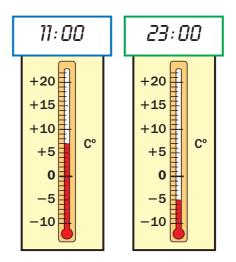

- Para ir a una oficina del tercer piso.
- Para ir a la segunda planta de garaje.
- Para ir a la planta baja.

A dónde vas

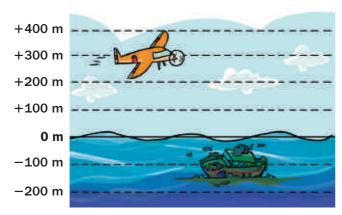
- Si pulsas el botón 0.
- Si pulsas el botón −1.
- Si pulsas el botón +4.

2. Observa el esquema de la actividad 1 y contesta.

- ¿Qué número indica la planta baja?
- Si estás en la planta baja y subes:
 - ¿A qué zona del edificio irás? ¿A qué pisos puedes ir?
 - ¿Qué tipo de números indican las plantas superiores a la planta 0?
- Si estás en la planta baja y bajas:
 - ¿A qué zona del edificio irás? ¿A qué pisos puedes ir?
 - ¿Qué tipo de números indican las plantas inferiores a la planta 0?


3. Observa el dibujo de los termómetros y completa.

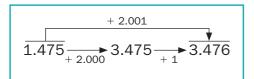
Los termómetros marcan la temperatura que hizo en una ciudad en dos momentos del día.


- A las 11 de la mañana, el termómetro marcaba ...º C.
 La temperatura era de ... grados.
- A las 11 de la noche, el termómetro marcaba ...º C.
 La temperatura era de ... grados bajo cero.

4. Observa los termómetros y responde.

- ¿Con qué tipo de números se indican las temperaturas por encima de 0 grados?
- Y las temperaturas por debajo de 0 grados?

5. Observa el dibujo y contesta.


- ¿Con qué número se indica el nivel del mar?
- ¿A cuántos metros sobre el nivel del mar vuela la avioneta?
 ¿Con qué tipo de números se indica una altitud?
- ¿A cuántos metros bajo el nivel del mar está el barco hundido?
 ¿Con qué tipo de números se indica una profundidad?

6. Piensa y contesta.

- Un ascensor estaba en el piso −1 y fue al piso +3.
 ¿Subió o bajó?
- Hace tres horas, la temperatura era de +2 °C y ahora es de -2 °C. ¿Ha subido o ha bajado la temperatura?
- Un submarino navegaba a −200 m y una hora después estaba a −100 m. ¿Qué hizo el submarino, ascender o descender?

CÁLCULO MENTAL

Suma 1.001, 2.001, 3.001...

1.264 + 1.001

4.382 + 4.001

8.463 + 2.001

2.845 + 3.001

3.913 + 5.001

7.529 + 6.001

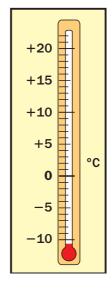
• ¿Cómo sumarías 1.002? ¿Y 1.003? ¿Cómo sumarías 4.005? ¿Y 5.006?

Problemas con números enteros

Sara, Rafa, Pedro y Eva han cogido el ascensor. ¿A qué piso llega cada uno? Estaba en el tercer sótano Estaba en el primer piso y sube 2 pisos. y sube 4 pisos. Inicio Variación Final Inicio Variación Final -3+1+ 2 +3 + 4 +1Llega al tercer piso. Llega al primer piso. Estaba en el segundo piso Estaba en el primer sótano y baja 3 pisos. y baja 1 piso. Inicio Variación Final Inicio Variación Final - 3 +2-1-1- 1 -2Llega al primer sótano. Llega al segundo sótano. Pedro

1. Observa el termómetro y completa en tu cuaderno.

 El termómetro marcaba +10 °C y la temperatura subió 2 grados.



Ahora marca ... °C.

El termómetro marcaba +3 °C
 y la temperatura bajó 10 grados.

Ahora marca ... °C.

■ El termómetro marcaba – 4 °C
 y la temperatura subió 8 grados.

Ahora marca ... °C.

El termómetro marcaba −1 °C
 y la temperatura bajó 5 grados.

Ahora marca ... °C.

2. Piensa y contesta.

Un barco echó el ancla por la borda. El ancla estaba a 1 m sobre el nivel del mar y al tirarla bajó 6 m. ¿A qué profundidad se paró?

3. Resuelve. Después, escribe con qué número entero expresarías la solución.

- Andrea vive en el quinto piso y baja 3 pisos para ir a casa de su amiga Lucía.
 ¿En qué piso vive Lucía?
- A medianoche el termómetro marcaba 4 grados bajo cero y al mediodía siguiente había subido la temperatura 15 grados.
 ¿Qué temperatura marcaba el termómetro al mediodía?
- Un pez nadaba a 4 metros bajo el nivel del mar y subió 1 metro.
 ¿A cuántos metros por debajo del nivel del mar está ahora el pez?

4. Expresa con un número entero. Después, piensa y contesta.

 Jorge deja el coche en la segunda planta de aparcamiento del edificio donde trabaja y sube a su oficina que está en la quinta planta.

Planta donde deja el coche ▶ ...
Planta donde está su oficina ▶ ...
¿Cuántos pisos sube Jorge?

 María trabaja en la tercera planta de un edificio.
 Hoy ha tenido que recoger una caja del almacén que está en el primer sótano.

Planta donde trabaja ▶ ...

Planta donde está el almacén ▶ ...
¿Cuántos pisos ha bajado María?

 A las 10 de la mañana, el termómetro marcaba 5 grados y a las 10 de la noche, 2 grados bajo cero.

Temperatura a las 10:00 ▶ ...

Temperatura a las 22:00 ▶ ...

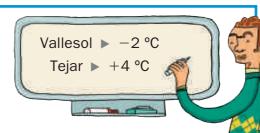
¿Cuántos grados bajó la temperatura?

 A las 3 de la madrugada, el termómetro marcaba 4 grados bajo cero y a las
 9 de la mañana, 1 grado bajo cero.

Temperatura a las 03:00 ▶ ...

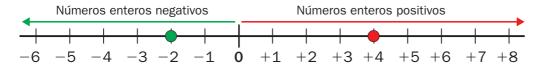
Temperatura a las 09:00 ▶ ...

¿Cuántos grados subió la temperatura?


5. RAZONAMIENTO. Piensa y contesta.

Un pájaro vuela a 3 m sobre el mar y, debajo de él, un pez nada a 2 m bajo el nivel del mar. ¿Qué animal está más cerca de la superficie del agua? ¿Cuántos metros hay entre ambos animales?

Iván, Sara y Nacho han ido a unos grandes almacenes. Iván está en el segundo piso del edificio, Sara está en el primer sótano y Nacho está en el segundo sótano. ¿Quién está más cerca de la planta baja?


La recta entera. Comparación de números enteros

Gonzalo ha anotado la temperatura mínima de ayer en dos localidades y ha representado los dos números en la recta entera.

Fíjate en el número 0 de la recta:

- A la izquierda de 0 se representan los números enteros negativos.
- A la derecha de 0 se representan los números enteros positivos.

¿Qué localidad tuvo la menor temperatura mínima? ¿Y la mayor?

Para comparar las dos temperaturas, mira la posición de los puntos en la recta entera.

- El número menor es el que está más a la izquierda: -2
- -2 < +4El número mayor es el que está más a la derecha: +4

Vallesol tuvo la menor temperatura y Tejar la mayor.

1. Observa la recta entera anterior y contesta.

¿Dónde está cada número, a la derecha o a la izquierda de 0? ¿Por qué?

$$-1$$

$$+7$$

$$+7$$
 -4 -3

$$-3$$

$$+5$$
 -5

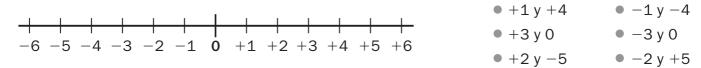
 ¿Qué número está más a la izquierda en la recta? ¿Cuál es menor?

la recta? ¿Cuál es mayor?



-300

• ¿Qué número está más a la derecha en


2. Copia la recta entera y completa los números que faltan.

- 3. Escribe el número anterior y el posterior.
 - ... ◀ +1 ▶ ◀ +4 ▶ ◀ -3 ▶ ...
- ... ◀ −5 ▶ ...

- ... ◆ 0 ▶ **•** ... **•** -2 ▶ ...
- ... ◀ −1 ▶ ...

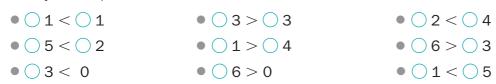
4. Busca los dos números en la recta y escribe el mayor.

5. Piensa dónde está cada número en la recta y escribe el signo > o <.

6. Ordena los siguientes números enteros.

HAZLO ASÍ

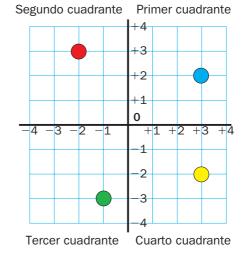
Ordena de mayor a menor: -1, +2 y -3.
 Imagina los números en la recta entera y escríbelos tal como están colocados de derecha a izquierda: primero escribe +2, después -1 y al final -3.


$$+2 > -1 > -3$$

7. Piensa y escribe en cada caso tres números enteros.

- Mayores que −2.
- Menores que −1.
- ullet Mayores que -3, que no sean negativos.
- lacktriangle Mayores que -5 y menores que 0.
- Mayores que −4 y menores que +4.
- Menores que −1 y mayores que −6.
- 8. Piensa y escribe el signo de cada número para que la desigualdad sea cierta. Si hay varias posibilidades, escríbelas todas.

- 9. RAZONAMIENTO. Piensa y completa cada oración con mayor o menor para que sea cierta.
 - Cualquier número entero positivo es ... que 0.
 - Cualquier número entero negativo es ... que 0.
 - Cualquier número entero negativo es ... que cualquier número entero positivo.
 - Cualquier número entero positivo es ... que cualquier número entero negativo.


Coordenadas cartesianas

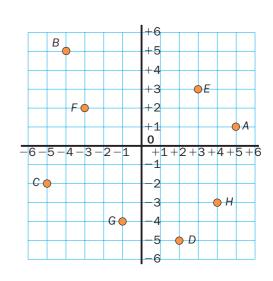
Diego ha representado varios puntos en los ejes de coordenadas cartesianas.

Observa los dos ejes:

- Se numeran como la recta entera.
- Son perpendiculares y se cortan en el 0.
- Dividen la cuadrícula en cuatro partes llamadas cuadrantes.

Las coordenadas cartesianas de los puntos son:

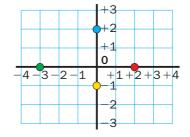
Fíjate en que las coordenadas de cada punto son positivas o negativas según el cuadrante en el que se encuentre.


1. Observa las coordenadas de los puntos anteriores y explica.

- ¿Cómo se busca la primera coordenada de cada punto?
- ¿Qué puntos tienen la primera coordenada positiva? ¿En qué cuadrantes están?
 ¿Y cuáles la tienen negativa? ¿En qué cuadrantes están?
- ¿Cómo se busca la segunda coordenada de cada punto?
- ¿Qué puntos tienen la segunda coordenada positiva? ¿En qué cuadrantes están? ¿Y cuáles la tienen negativa? ¿En qué cuadrantes están?

2. Escribe las coordenadas de cada punto en tu cuaderno.

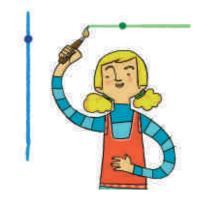
RECUERDA


Escribe primero el número entero del eje horizontal y después, el del eje vertical.

3. Escribe las coordenadas de cada punto. Después, contesta.

PRESTA ATENCIÓN

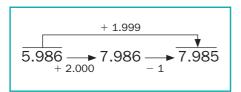
Los cuatro puntos están en uno de los ejes: una de sus coordenadas es 0.


- ¿Qué puntos están sobre el eje vertical? ¿Cuál es su primera coordenada?
- ¿Qué puntos están sobre el eje horizontal? ¿Cuál es su segunda coordenada?
- 4. Dibuja en una cuadrícula unos ejes de coordenadas cartesianas y representa estos puntos.
 - **(+4, +2) (+4, +2)**
- (−2, −3)
- **▶** (+3, 0)

- > (-3, +5)
- (+1, -4)
- > (0, -2)
- 5. Observa los puntos representados en la actividad 4 y escribe. Después, contesta.
 - Las coordenadas de dos puntos que se encuentren en la misma línea vertical que el punto azul.
 - **(**+4, +2)
- *A* ▶ (..., ...)
- *B* ▶ (..., ...)

¿Qué coordenada coincide en los tres puntos?

- Las coordenadas de dos puntos que se encuentren en la misma línea horizontal que el punto verde.
- D ▶ (....)


¿Qué coordenada coincide en los tres puntos?

- 6. Traza en una cuadrícula unos ejes de coordenadas y dibuja.
 - Un triángulo cuyos vértices son los puntos (+2, +4); (-3, +3) y (-2, 0).
 - Un cuadrilátero cuyos vértices son los puntos (+3, +1); (-3, -1); (0, -3) y (+3, -3).

CÁLCULO MENTAL

Suma 999, 1.999, 2.999...

$$4.475 + 4.999$$

¿Cómo sumarías 998? ¿Y 996? ¿Cómo sumarías 2.997? ¿Y 4.995?

Actividades

- 1. Escribe con qué tipo de número entero expresarías cada posición.
 - La tercera planta de un edificio.
 - Una temperatura de 3 °C bajo cero.
 - El nivel del mar.
 - El segundo sótano.
 - La altura a la que vuela un avión.
 - La planta baja.
- 2. Expresa qué indica cada número entero.
 - La planta −1 de un edificio.
 - Un puerto de montaña que está a +2.000 m.
 - Una temperatura de -8 °C.
 - Un submarinista que bucea a −60 m.
 - Una temperatura de +10 °C.
 - La planta 0 de un hotel.
- 3. Representa en la recta entera los siguientes números y contesta.

$$0 + 4 - 1 + 2 - 3 - 4 + 1$$

¿Cómo son los números situados a la izquierda de 0? ¿Y a su derecha?

- 4. ESTUDIO EFICAZ. Explica cómo comparas dos números enteros.
- 5. Escribe en cada caso el número mayor y el menor.

$$\bullet$$
 +2, -2, -1, +1

$$\bullet$$
 -3. +2. -

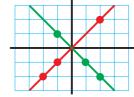
$$\bullet$$
 -3, +2, -4 \bullet +5, -5, -2, +4, -6

6. Ordena de menor a mayor los números de cada hoja.

7. Piensa y escribe.

- Los números anterior y posterior a 0.
- Los números negativos mayores que −4.
- Los números mayores que −1 y menores que +3.
- Los números menores que −3 y mayores que -7.
- 8. Piensa y contesta.

¿Quién está más cerca de la planta baja?


- Aurora está en el primer aparcamiento subterráneo y David está en el tercero.
- Antonio está en la cuarta planta y Concha está en el segundo sótano.

¿Dónde hace más calor?

- En la ciudad A hay 0 °C y en la ciudad B hay 6 grados bajo cero.
- En la ciudad C hay 3 grados bajo cero y en la ciudad D hay 3 grados.

¿Quién está más cerca de la superficie del mar?

- Sara está en lo alto de un acantilado a 5 m de altura y Luis está haciendo fotos submarinas a 8 m de profundidad.
- 9. Escribe las coordenadas de los tres puntos de cada recta y contesta.

Recta roja Recta verde (..., ...) (..., ...) (..., ...) (..., ...)

(..., ...) (..., ...) ¿Cómo son las coordenadas de cada punto

de la recta roja? ¿Y las de cada punto de la recta verde?

10. Representa en unos ejes de coordenadas cartesianas los siguientes puntos.

$$B \triangleright (-1, -3)$$

$$C \triangleright (0, +2)$$

11. ESTUDIO EFICAZ. Completa las oraciones.

- Los números enteros pueden ser positivos, ... o ...
- En la recta entera, los números enteros negativos están todos situados ...
- De dos números enteros, el menor es el situado más a la ... en la recta entera.
- La segunda coordenada cartesiana de un punto del eje horizontal es siempre ...

12. Resuelve.

- Un submarino está a 250 m bajo el nivel del mar y desciende 100 m más. ¿A qué profundidad se encuentra ahora?
- Miguel llega al portal de su casa y baja un piso para dejar la bici en el trastero.
 Después, sube 5 pisos para ir a su casa.
 ¿En qué piso vive Miguel?
- Alberto y Jaime están jugando a las cartas.
 Alberto tenía +5 puntos y en la última baza ha sacado -7 puntos. ¿Cuántos puntos tiene ahora?
 - Jaime tenía -2 puntos y ha sacado +10 puntos. ¿Cuántos tiene ahora?
- Emilio sacó del congelador un caldo que estaba a 2 grados bajo cero y lo puso a calentar. Quiere que el caldo llegue a +40 °C. ¿Cuántos grados tiene que subir la temperatura del caldo?

ERES CAPAZ DE...

En un gran almacén, las personas suben y bajan varios pisos para visitar las distintas plantas.

En los directorios se indica la planta en la que se encuentra cada sección.

Fíjate en que se ha suprimido el signo + de los números positivos.

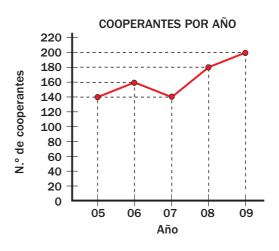
- Averigua cuántos pisos tiene que subir o bajar cada una de las siguientes personas:
 - Ana está en la planta de señoras y quiere comprar una raqueta de tenis.
 - Pablo está en la planta de caballeros y quiere mirar los equipos de música.
 - Elsa está en la planta baja y quiere tomarse un refresco.
 - David ha dejado el coche en el aparcamiento y va a hacer la compra.
 - Luisa está en la planta de niños y va a mirar los mp3.

Comprender un directorio

Solución de problemas

Buscar datos en varios textos o gráficos

Busca los datos necesarios en los textos o el gráfico y resuelve.


AVANZANDO AÑO TRAS AÑO

El número de proyectos llevados a cabo por nuestra ONG *Mundo común* ha crecido mucho. En 2005 se realizaron 75 proyectos, en 2006 72 proyectos, y en 2007, 2008 y 2009 se hicieron 15 proyectos más que el año anterior.

QUEDA MUCHO POR HACER

- La contribución de nuestros socios
- es esencial.
- En el año 2005 contábamos con 800 socios
- que pagaban una cuota de 30 € anuales.
- En cada uno de los años sucesivos,
- el número de socios aumentó en 25 personas
- y cada año la cuota fue 8 € mayor que
- el año anterior.
- 0

- 1. ¿Cuántos proyectos realizó en total la ONG entre 2007 y 2008?
 - Proyectos realizados en 2008: ...
 Proyectos realizados en total en 2007 y 2008: ...

Solución: Realizó ...

- ¿Cuántos proyectos realizó la ONG en 2009?
- 3. ¿Cuántos cooperantes tuvo en total los tres primeros años? ¿Tuvo más o menos que en los dos últimos?
- 4. ¿Cuántos socios tuvo la ONG en el año 2007? ¿Cuánto recaudó en total?
- **5. INVENTA.** Escribe y resuelve:
 - Un problema en el que uses algunos de los datos de los textos.
 - Un problema en el que uses algunos de los datos del gráfico.

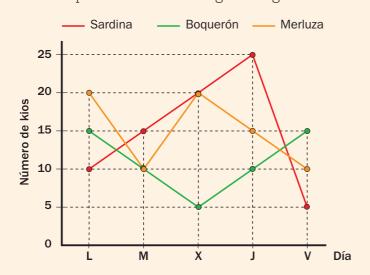
EJERCICIOS

- 1. Calcula.
 - 302.568 + 664.259 345 × 726
 - 742.053 + 85.067
- 713 × 580
- 899.087 123.999
- **8.100:36**
- 630.120 24.986
- **41.109**: 576

- 2. Calcula.
 - 9: (6 − 3) − 2
- $3 \times 5 9 + 8$
- \bullet 8 (9 7) \times 4
- \bullet 20 (4 + 2) \times 3
- \bullet 1 + 7 × 6 8
- 5 × 3 − 4 × 3
- 7 8:4 + 1
- \bullet 9 (8 6) 5
- 3. ESTUDIO EFICAZ. Explica cuáles son los términos de una potencia y qué significa cada uno de ellos.
- 4. Expresa como una potencia y escribe cómo se lee.
 - 8 × 8
 - 7 × 7 × 7
 - 2 × 2 × 2 × 2 × 2
 - 3 × 3 × 3 × 3
 - \bullet 5 \times 5 \times 5 \times 5 \times 5
- 5. Escribe y calcula.
 - Cinco al cuadrado.
- Dos a la sexta.
- Cuatro al cubo.
- Tres a la quinta.
- 6. Expresa cada número usando una potencia de base 10.
- Escribe la expresión polinómica de cada número.
 - 3.576
- **206.120**
- **12.093**
- 4.150.032

PROBLEMAS

- 8. En un pueblo hay siete casas; cada casa tiene siete gatos; cada gato persigue a siete ratones y cada ratón come siete granos de trigo. ¿Cuántos gatos, ratones y granos de trigo hay?
- 9. Marta compró para su restaurante 35 kg de filetes a 18 € el kilo. Más tarde, vio que en otro almacén el kilo era 2 € más caro. ¿Cuánto le habría costado la compra en ese almacén? ¿Cuánto se ahorró?
- 10. Hoy, un cuarto de los 300 visitantes de un museo han sido adultos y el resto niños. Los adultos han pagado 3 € cada uno y los niños han entrado gratis. ¿Cuánto se ha recaudado hoy en el museo?
- 11. Juan tiene 18 canicas, Jorge 7 canicas y Magdalena 11. Las han juntado todas y las han colocado formando un cuadrado. ¿Cuántas canicas hay en cada lado del cuadrado?
- 12. El año pasado en un campamento hubo 8 turnos de 125 campistas cada uno. Este año harán 2 turnos más y todos los turnos tendrán 5 campistas más cada uno. ¿Cuántos campistas habrá este año?

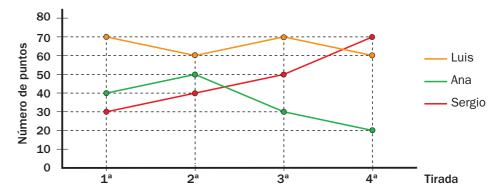


13. María compró 3 blusas iguales por 51 €. Compró también 2 pantalones iguales que costaban cada uno 3 € menos que una blusa. ¿Cuánto pagó en total?

Tratamiento de la información

Gráficos lineales de tres características

En una pescadería han anotado las ventas semanales de sardina, boquerón y merluza. Están representadas en el siguiente gráfico lineal.


- ¿Qué día se vendieron los mismos kilos de boquerón que de merluza?
 ¿Cuántos kilos fueron?
 - Fue el martes. Se vendieron 10 kg de cada tipo de pescado.
- ¿Aumentó o disminuyó la venta de sardina de lunes a jueves?
 La venta aumentó.

En un gráfico lineal se utilizan puntos y una línea que los une.

- 1. Observa el gráfico de arriba y contesta.
 - ¿Cuántos kilos de boquerón vendieron el miércoles menos que el lunes?
 - ¿Qué pescado se vendió más el jueves? ¿Cuál se vendió menos el miércoles?
 - ¿En qué días disminuyó la venta de merluza respecto al día anterior?
- 2. En el gráfico se han representado los puntos obtenidos por tres amigos en cuatro tiradas con arco consecutivas. Obsérvalo y contesta.

- ¿Cuántos puntos obtuvo cada uno en la tercera tirada?
- ¿En qué tiradas disminuyó el número de puntos de Luis respecto a la tirada anterior? ¿En qué tirada aumentó?
- ¿Qué tirador mejoró sus resultados con las sucesivas tiradas?

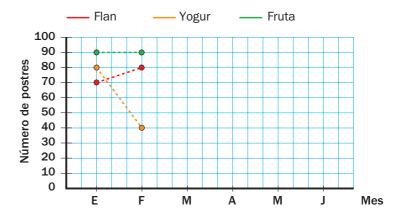
3. Lee la información. Luego copia y completa la tabla y el gráfico.

María está revisando los postres de cada tipo que ha servido en los últimos meses.

ENERO ▶ 70 flanes, 80 yogures y 90 piezas de fruta.

FEBRERO ▶ 80 flanes, 40 yogures y 90 piezas de fruta.

MARZO ▶ 60 flanes, 50 yogures y 90 piezas de fruta.


ABRIL ▶ 50 flanes, 60 yogures y 70 piezas de fruta.

MAYO ▶ 70 flanes, 60 yogures y 90 piezas de fruta.

JUNIO ▶ 80 flanes, 70 yogures y 80 piezas de fruta.

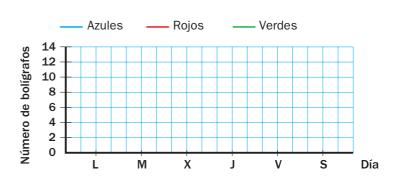
	Flan	Yogur	Fruta
Enero	70	80	90
Febrero	80		
Marzo			
Abril			
Mayo			
Junio			

4. Copia y completa la tabla y el gráfico con los datos del texto.

Mónica ha anotado los bolígrafos de cada color que vendió cada día de la semana pasada.

LUNES ▶ 12 azules, 10 rojos y 8 verdes.

MARTES ▶ 10 azules, 6 rojos y 4 verdes.


MIÉRCOLES ▶ 8 azules, 6 rojos y 10 verdes.

JUEVES ▶ 12 azules, 8 rojos y 6 verdes.

VIERNES ▶ 10 azules, 8 rojos y 8 verdes.

SÁBADO ▶ 12 azules, 10 rojos y 10 verdes.

	Azules	Rojos	Verdes
Lunes			
Martes			
Miércoles			
Jueves			
Viernes			
Sábado			

4

Múltiplos y divisores

En los supermercados puedes encontrar dos tipos de productos: los que se venden por unidades y los que solo se venden en cajas, bolsas o paquetes de varias unidades juntas. Estos productos solo los puedes comprar de 2 en 2, de 3 en 3, de 10 en 10...

- Di 5 productos que se suelan comprar por unidades sueltas y otros 5 productos que se vendan en cajas, bolsas, paquetes... de varias unidades.
- Observa la fotografía y contesta.
 - Si compras 5 packs de zumos, ¿cuántos zumos tendrás?Y si compras 8 cajas de burritos, ¿cuántos burritos tendrás?
 - ¿Puedes comprar 20 burritos? ¿Cuántos paquetes de burritos son?
 ¿Puedes comprar 17 burritos? ¿Por qué?
 - Si necesitas 50 bombones para una fiesta, ¿cuántas cajas de bombones tendrás que comprar? ¿Cuántos te sobrarán?

RECUERDA LO QUE SABES

División exacta y división entera

Una división es exacta si su resto es 0.
 En una división exacta se cumple que:

$$D = d \times c$$

 Una división es entera si su resto es distinto de 0.

En una división entera se cumple que:

$$D = d \times c + r$$

258 <u>6</u> 18 43 258 = 6 × 43

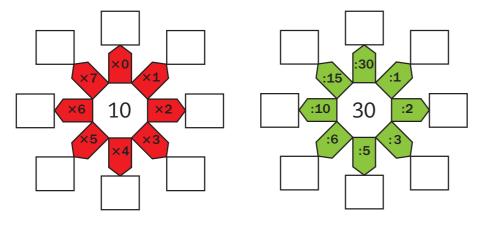
1. Calcula las siguientes divisiones y haz la prueba. Escribe debajo si es una división exacta o entera.

91:7

• 569:8

• 2.951 : 26

82:4


3.654:9

• 3.570:35

2. Escribe con los tres números de cada recuadro una multiplicación y dos divisiones.

3. Calcula en cada caso el número que falta.

4. Copia y completa.

VAS A APRENDER

- A reconocer si un número es múltiplo de otro, y a obtener múltiplos de un número.
- A reconocer si un número es divisor de otro, y a obtener todos los divisores de un número.
- A calcular el mínimo común múltiplo y el máximo común divisor de dos o más números.
- A reconocer si un número es primo o compuesto.

Múltiplos de un número

Quique hace una colección de naves extraterrestres que venden en el kiosco. En cada bolsita hay 3 naves. ¿Puede comprar 12 naves? ¿Y 14 naves?

Según el número de bolsitas que compre, Quique puede tener estas naves:

N.º de bolsitas	0	1	2	3	4	5
N.º de naves	3 × 0	3 × 1	3 × 2	3 × 3	3 × 4	3 × 5
	0	3	6	9	12	15

Quique puede comprar 12 naves, pero no 14.

Fíjate:

- Quique puede no comprar ninguna nave o comprar 3, 6, 9, 12, 15... Los números 0, 3, 6, 9, 12, 15... son múltiplos de 3.
- Quique no puede comprar 14 naves. El número 14 no es múltiplo de 3.

Para comprobar si un número es o no múltiplo de otro, hacemos una división.

¿Es 12 múltiplo de 3?

12
$$\begin{bmatrix} 3 \\ 0 \end{bmatrix}$$
 La división es exacta.
12 = 3 × 4
12 sí es múltiplo de 3.

¿Es 14 múltiplo de 3?

14
$$\lfloor 3 \rfloor$$
 La división es entera.
2 4 14 = 3 × 4 + 2
14 no es múltiplo de 3.

- Los múltiplos de un número se obtienen multiplicando dicho número por los números naturales: 0, 1, 2, 3, 4...
- Un número a es múltiplo de otro b si la división a : b es exacta.

1. Calcula y explica cómo lo has hecho.

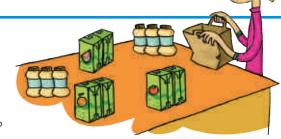
- Los seis primeros múltiplos de 2. ▶ 0, 2...
 Los ocho primeros múltiplos de 6.
- Los siete primeros múltiplos de 5.
- Los diez primeros múltiplos de 9.

2. Haz la división y contesta. Razona tu respuesta.

- Es 42 múltiplo de 7?
 Es 54 múltiplo de 4?
 Es 156 múltiplo de 12?

- ¿Es 60 múltiplo de 8?
 ¿Es 135 múltiplo de 5?
 ¿Es 378 múltiplo de 16?

3. Resuelve.


Natalia compra las latas de refresco en paquetes de 6. ¿Puede comprar 72 latas? ¿Y 82 latas?

Mínimo común múltiplo

Ángela compra siempre los zumos en paquetes de 2 y los batidos en paquetes de 3.

Hoy ha comprado el mismo número de zumos que de batidos y el menor número posible de ellos. ¿Cuántos zumos y cuántos batidos ha comprado hoy?

- Compra paquetes de 2 zumos y de 3 batidos.
 1.º Calcula los primeros múltiplos de cada número.
- Compra tantos zumos como batidos.
 2.º Busca los múltiplos comunes de ambos números.
- Compra el menor número posible de zumos y de batidos.
 - 3.º Busca el menor múltiplo común, distinto de cero.

Múltiplos de $2 \triangleright 0, 2, 4, 6, 8, 10, 12...$ Múltiplos de $3 \triangleright 0, 3, 6, 9, 12, 15...$

Múltiplos comunes ▶ 0, 6, 12...

El menor distinto de cero ▶ 6

Ángela ha comprado hoy 6 zumos y 6 batidos.

Este número se llama mínimo común múltiplo de 2 y 3, y se escribe m.c.m. (2 y 3).

El mínimo común múltiplo de 2 y 3 es 6. ▶ m.c.m. (2 y 3) = 6

El mínimo común múltiplo (m.c.m.) de dos o más números es el menor múltiplo común, distinto de cero, de dichos números.

1. Calcula y explica cómo lo has hecho.

- Los ocho primeros múltiplos de 4 y de 6.
 Los múltiplos comunes de 4 y 6.
 El mínimo común múltiplo de 4 y 6.
- m.c.m. (2 y 5)
- m.c.m. (8 y 10)
- m.c.m. (3 y 9)
- m.c.m. (9 y 12)


2. Resuelve.

Fran y Raquel van a patinar a la misma pista. Fran va cada 4 días y Raquel, cada 5 días. Hoy han ido los dos.

¿Dentro de cuántos días volverán a coincidir por primera vez en la pista de patinaje?

CÁLCULO MENTAL

Resta 1.001, 2.001, 3.001...

3.256 - 1.001

4.513 - 4.001

7.998 - 6.001

5.748 - 3.001

7.912 - 5.001

9.031 - 8.001

- ¿Cómo restarías 1.002? ¿Y 1.003? ¿Y 1.004?
- ¿Cómo restarías 4.002? ¿Y 5.003?

Divisores de un número

Marta va a pegar 21 fotografías en su álbum. Quiere poner en cada hoja el mismo número de fotos y que no le sobre ninguna.

¿Puede poner 3 fotos en cada hoja? ¿Y 4 fotos?

Si pone 3 fotos en cada hoja:

Sí puede poner 3 fotos en cada hoja. El número 3 es divisor de 21.

• Si pone 4 fotos en cada hoja:

No puede poner 4 fotos en cada hoja. El número 4 no es divisor de 21.

Fíjate:

La división 21 : 3 es exacta. 21 es múltiplo de 3. 3 es divisor de 21.

- Un número b es divisor de otro a si la división a : b es exacta.
- Si b es divisor de a, a es múltiplo de b, y si a es múltiplo de b, b es divisor de a.

1. Haz cada división y contesta. Razona tu respuesta.

- ¿Es 6 divisor de 46?
- ¿Es 5 divisor de 80?
- ¿Es 17 divisor de 544?

- ¿Es 9 divisor de 72?
- ¿Es 8 divisor de 186?
- ¿Es 24 divisor de 456?

2. Observa los términos de cada división exacta y completa.

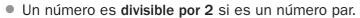
$$28:7=4$$

$$45:9=5$$

30 es ... de 5. 5 es ... de 30. 56 es ... de 8. 8 es ... de 56. ... es múltiplo de es divisor de es múltiplo de es divisor de ...

... es múltiplo de ... y de ... y ... son divisores de ...

3. Resuelve.


Rafa ha hecho 40 croquetas. ¿Puede repartirlas en partes iguales en 8 platos sin que le sobre ninguna? ¿Y en 9 platos?

Criterios de divisibilidad por 2, 3 y 5

Jorge quiere saber si los números 42 y 65 son divisibles por 2, 3 o 5, es decir, si 42 y 65 son múltiplos de 2, de 3 o de 5.

Puede hacer la división pero, en estos casos, es más fácil aplicar estas reglas.

Un número es divisible por 3 si la suma de sus cifras es un múltiplo de 3.

• Un número es divisible por 5 si su última cifra es 0 o 5.

6 es múltiplo de 2. 6 es divisible por 2.

1. Escribe y comprueba.

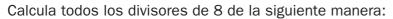
- Escribe diez múltiplos de 2. ¿Son pares todos los números que obtienes?
- Escribe diez múltiplos de 3. Suma las cifras de cada número.
 ¿Es siempre la suma un múltiplo de 3?
- Escribe diez múltiplos de 5. ¿Terminan todos los números en 0 o en 5?

2. Observa los números del recuadro y contesta. Explica por qué.

- ¿Qué números son múltiplos de 2?
- ¿Qué números son divisibles por 3?
- ¿De qué números es 5 un divisor?

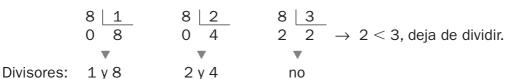
3. Calcula y contesta.

Escribe los doce primeros múltiplos de 10 y subraya la última cifra de cada uno. ¿Cómo puedes saber si un número es múltiplo de 10?


4. RAZONAMIENTO. Piensa y contesta. Pon un ejemplo que explique cada respuesta.

- ¿Es 0 múltiplo de todos los números?
- ¿Es cualquier número múltiplo de sí mismo?

- ¿Es 1 divisor de todos los números?
- ¿Es cualquier número divisor de sí mismo?


Cálculo de todos los divisores de un número

Roberto tiene 8 flores para colocar en jarrones. Quiere poner en cada jarrón el mismo número de flores y que no le sobre ninguna. ¿Cuántas flores puede poner en cada jarrón?

- 1.º Divide 8 entre los números naturales: 1, 2, 3...

 De cada división exacta, obtienes dos divisores: el divisor y el cociente.
- 2.º Deja de dividir cuando el cociente sea igual o menor que el divisor.

Los divisores de 8 son: 1, 2, 4 y 8.

Puede poner 1, 2, 4 u 8 flores en cada jarrón.

1. Calcula todos los divisores de cada número. Explica cómo lo haces.

- De 6
 De 9
 De 12
 De 17
 De 35
- De 7
 De 10
 De 15
 De 24
 De 42

2. Resuelve.


- Eva tiene 30 caramelos. Los quiere repartir en bolsitas, todas con el mismo número de caramelos, de forma que no le sobre ninguno. ¿Cuántos caramelos puede poner en cada bolsita?
- El profesor de Javier quiere hacer equipos con los 20 alumnos que hay en la clase, todos con el mismo número de niños y sin que quede ninguno solo. ¿De cuántos alumnos puede formar cada grupo?
- En una biblioteca quieren hacer paquetes con 27 libros, de manera que haya el mismo número de libros en cada paquete y no sobre ningún libro.
 ¿Cuántos libros pueden poner en cada paquete?

3. Piensa y contesta.

- ¿Puedes escribir todos los múltiplos de un número?
 ¿Y todos los divisores de un número?
- ¿Cuántos divisores tiene como mínimo un número? ¿Cuáles son?

Números primos y compuestos

Marcos tiene 13 cartas y Rocío, 14. Cada uno quiere repartir sus cartas en montones, de forma que cada montón tenga el mismo número de cartas y no sobre ninguna. ¿Cuántas cartas puede poner Marcos en cada montón? ¿Y Rocío?

Calcula los divisores de 13.

Divisores de 13 ▶ 1 y 13

Marcos solo puede hacer los montones de dos formas: poniendo 1 o 13 cartas en cada montón.

El número 13 solo tiene dos divisores. Por eso se llama número primo.

Calcula los divisores de 14.

Divisores de 14 ▶ 1, 2, 7 y 14

Rocío puede hacer los montones de cuatro formas distintas: poniendo 1, 2, 7 o 14 cartas en cada montón.

El número 14 tiene más de dos divisores. Por eso se llama número compuesto.

Un número es primo si solo tiene dos divisores: 1 y él mismo. Un número es compuesto si tiene más de dos divisores.

1. Calcula todos los divisores de cada número e indica si es primo o compuesto.

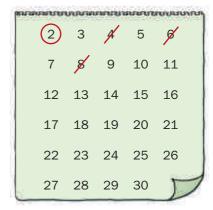
8

10

12

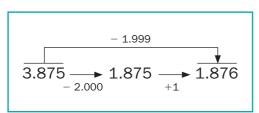
17

21


24

23

25


29

- 2. Escribe los números del 2 al 30 y sigue estos pasos para hallar los que son primos.
 - 1.º El 2 es primo, rodéalo. Desde 2, cuenta de 2 en 2 y tacha los múltiplos de 2.
 - 2.º El 3 es primo, rodéalo. Desde 3, cuenta de 3 en 3 y tacha los múltiplos de 3 que no estén ya tachados.
 - 3.º El 5 es primo, rodéalo. Desde 5, cuenta de 5 en 5 y tacha los múltiplos de 5 que no estén ya tachados.
 - 4.º Los números no tachados son primos. Rodéalos.

CÁLCULO MENTAL

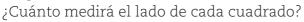
Resta 999, 1.999, 2.999...

2.417 - 999

6.268 - 3.999

8.145 - 6.999

5.832 - 2.999


8.613 - 4.999

9.279 - 7.999

- ¿Cómo restarías 998? ¿Y 997? ¿Y 996?
- ¿Cómo restarías 1.998? ¿Y 2.997?

Máximo común divisor

Para hacer un juego con tarjetas, Alex quiere cortar una cartulina de 16 cm de largo y 12 cm de ancho en cuadrados iguales, de forma que sean lo más grandes posible y que no le sobre ningún trozo de cartulina.

- No quiere que le sobre ningún trozo de cartulina, ni de largo ni de ancho.
 - 1.º Calcula los divisores de cada número.
- Quiere hacer cuadrados, por lo que el largo tiene que ser igual que el ancho.
 - 2.º Busca los divisores comunes de ambos números.
- Quiere hacer cuadrados lo más grandes posible.
 - 3.º Busca el mayor de los divisores comunes.

- Divisores de 16 ▶ 1, 2, 4, 8 y 16 Divisores de 12 ▶ 1, 2, 3, 4, 6 y 12
- Divisores comunes ▶ 1, 2 y 4
- El mayor divisor común ▶ 4

El lado de cada cuadrado medirá 4 cm.

Este número se llama máximo común divisor de 16 y 12, y se escribe m.c.d. (16 y 12).

El máximo común divisor de 16 y 12 es 4. ► m.c.d. (16 y 12) = 4

El máximo común divisor (m.c.d.) de dos o más números es el mayor divisor común de dichos números.

1. Calcula y explica cómo lo has hecho.

- Los divisores de 20 y de 30. Los divisores comunes de 20 y 30. El máximo común divisor de 20 y 30.
- m.c.d. (4 y 12)
- m.c.d. (18 y 27)
- m.c.d. (9 y 14)m.c.d. (24 y 32)

2. Resuelve.

Laura tiene una cuerda roja de 6 m y otra azul de 8 m. Quiere cortarlas en trozos, todos de la misma longitud y lo más largos posible, de manera que no le sobre ningún trozo de cuerda. ¿Cuánto medirá cada trozo de cuerda?

3. Calcula el m.c.m. y el m.c.d. de cada pareja de números.

RECUERDA

m.c.m. ▶ menor múltiplo común distinto de 0.

m.c.d. ▶ mayor divisor común.

4. Piensa si tienes que calcular el m.c.m. o el m.c.d. y resuelve.

 Luis está enfermo. El médico le ha mandado tomar un jarabe cada 8 horas y una pastilla cada 12 horas. Acaba de tomar las dos medicinas juntas.
 ¿Dentro de cuántas horas volverá a tomar por primera vez las dos medicinas juntas?

- En una frutería tienen 20 kg de peras y 16 kg de manzanas.
 Preparan unas cajas con manzanas y otras con peras, todas del mismo peso, lo más grandes posible y sin que sobre fruta. ¿Cuánto pesa cada caja?
 - Cajas iguales sin que sobre fruta. ▶ ¿Calculo múltiplos o divisores?
 - Las cajas son lo más grandes posible. ▶ ¿Calculo el máximo o el mínimo?

5. Calcula el m.c.m. o el m.c.d. y contesta.

- Óscar tiene un bidón con 10 litros de agua y otro con 8 litros de naranjada. Echa el líquido de cada bidón en varias botellas, todas iguales, y no le sobra nada de agua ni de naranjada en los bidones. ¿Qué capacidad tendrán, como máximo, las botellas?
- En un juego de ordenador, Tomás dispara a los globos rojos, que valen 6 puntos, y Nieves a los globos azules, que valen 4 puntos. Los dos niños han obtenido al final la misma puntuación. ¿Cuál es el menor número de puntos que han podido sacar?

- Maite ha regado hoy los geranios y los cactus de la terraza. Riega los geranios cada 3 días y los cactus cada 9 días. ¿Cuántos días tienen que pasar como mínimo hasta que Maite vuelva a regar las dos plantas el mismo día?
- **6.** RAZONAMIENTO. Calcula y completa. Después, contesta.

20 es ... de 4 m.c.d.
$$(20 \text{ y 4}) = \dots$$
 m.c.m. $(20 \text{ y 4}) = \dots$

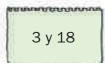
Si un número es múltiplo o divisor de otro, ¿cuál es el m.c.d. de ambos números? ¿Y el m.c.m.?

Pon tres ejemplos de un número múltiplo de otro y comprueba tu respuesta.

Actividades

- 1. ESTUDIO EFICAZ. Explica qué son el m.c.m. y el m.c.d., y cómo se hallan.
- 2. Escribe los diez primeros múltiplos de cada número. Después, calcula.

- m.c.m. (6 y 8)
- m.c.m. (8 y 12)
- m.c.m. (6 y 10)
- m.c.m. (12 y 15)
- 3. Calcula y contesta.
 - ¿Es 138 múltiplo de 6? ¿Y de 8?
 - ¿Es 8 divisor de 132? ¿Y de 216?
 - ¿Es 96 divisible por 2?
 - ¿Es 174 divisible por 3?
 - ¿Es 381 divisible por 5?
- 4. Halla todos los divisores de cada número. Después, contesta.



- ¿Cuáles de estos números son números primos? ¿Por qué?
- ¿Cuáles de estos números son números compuestos? ¿Por qué?
- 5. Halla todos los divisores y calcula.
 - m.c.d. (12 y 15)
- m.c.d. (16 y 40)
- m.c.d. (30 y 50)
- m.c.d. (48 y 72)
- 6. Completa.

... es múltiplo de ...

$$m.c.m. (3 y 18) = ...$$

m.c.d. (3 y 18) = ...

4 y 32

... es divisor de ...

m.c.d.
$$(4 y 32) = ...$$

$$m.c.m. (4 y 32) = ...$$

- 7. Completa y calcula.
 - El mínimo común múltiplo de tres números es ...

m.c.m. (3, 6 y 8) = ...

m.c.m. (2, 4 y 5) = ...

 El máximo común divisor de tres números es ...

m.c.d. (8, 12 y 16) = ...

m.c.d. (15, 18 y 24) = ...

8. Calcula el m.c.d. y el m.c.m. de cada pareja de números primos. Después, contesta.

2 y 3

5 y 7

3 y 11

¿Cuál es el m.c.d. de dos números primos? ¿Y el m.c.m.?

9. Piensa y contesta.

8 es múltiplo de 2.

- ¿Son todos los múltiplos de 8 también múltiplos de 2?
- ¿Son todos los múltiplos de 2 también múltiplos de 8?

6 es divisor de 12.

- ¿Son todos los divisores de 6 también divisores de 12?
- ¿Son todos los divisores de 12 también divisores de 6?
- **10.** Averigua y escribe.
 - Los números menores que 70 que son múltiplos de 3 y de 5.
 - Los divisores de 24 que no son divisores de 8.
 - Un número mayor que 20 y menor que 30. Dos de sus divisores son 2 y 3.
 - Un número mayor que 10 y menor que 40. Es múltiplo de 6. No es múltiplo de 4 ni de 9.

11. Observa cuántas unidades tiene cada paquete y contesta.

3 cromos

8 pilas 24 tizas

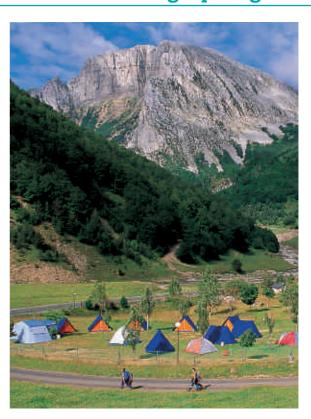
- ¿Se pueden comprar 10 cromos?
 ¿Y 40 pilas? ¿Y 96 tizas?
- ¿Cuántos cromos, pilas y tizas se pueden comprar? Escribe dos posibles cantidades de cada producto.

12. Observa y resuelve.

Toni tiene que envasar 45 rosquillas en cajas iguales. ¿Qué caja puede utilizar para que no sobre ninguna rosquilla?

¿Puede meter otro número de rosquillas en cada caja? ¿Cuántas?

13. Resuelve.


- Luis quiere repartir 28 bolígrafos azules y 20 rojos en botes, de manera que en cada bote haya el mismo número de bolígrafos, todos del mismo color, y que no sobre ninguno. ¿Cuántos bolígrafos como máximo puede meter en cada bote?
- De una estación salen dos líneas de autocares. Los autocares de la línea A salen cada 4 horas y los de la línea B cada 6 horas. A las 7 de la mañana sale un autocar de cada línea. ¿Cuánto tiempo pasa hasta que vuelven a salir los dos a la misma hora? ¿A qué hora es?
- Carmen tiene una finca rectangular de 12 m de largo y 8 m de ancho.
 Quiere dividirla en parcelas cuadradas iguales lo más grandes posible.
 ¿Cuántos metros medirá el lado de cada parcela?

ERES CAPAZ DE...

Alba está organizando un fin de semana de juegos en el campo.

- Piensa hacer grupos de 3 personas para jugar a la carretilla, de 4 para las carreras de relevos y de 5 para un juego de pistas.
 - Quiere llevar al menor número de personas de forma que al hacer los grupos nadie se quede sin jugar.
 - ¿A cuántas personas llevará Alba?
- Para dormir, va a llevar tiendas de campaña, todas iguales. Debe elegir entre varios tamaños de tienda: las hay de 4, 5, 6... hasta 10 personas.
 - ¿Cuántas personas pueden dormir en cada tienda, de manera que en todas las tiendas haya el mismo número de personas?
 - Si Alba decide llevar el menor número posible de tiendas, ¿cuántas tiendas llevará y cuántas personas dormirán en cada tienda?

Hacer grupos iguales

Solución de problemas

Hacer una tabla

En algunos problemas, es útil hacer una tabla que recoja los números que cumplen ciertas condiciones. Resuelve estos problemas de esa manera.

Lourdes colecciona muñecas. Tiene menos de 40. Al agruparlas de 6 en 6 sobra 1 muñeca, y al agruparlas de 7 en 7 sobran 2 muñecas. ¿Cuántas muñecas tiene Lourdes?

Vamos a hacer una tabla en la que pondremos los números que cumplen cada condición del enunciado del problema.

Los números que cumplen la primera condición se forman al multiplicar 6 por 1, 2, 3... y sumar 1 al resultado. Los anotamos en la primera fila de la tabla.

De la misma forma, los números que cumplen la segunda condición se forman al multiplicar 7 por 1, 2, 3... y sumar 1 al producto. Los anotamos en la segunda fila de la tabla.

De 6 en 6 sobra 1	6 × 1 + 1 7	6 × 2 + 1 13	6 × 3 + 1 19	6 × 4 + 1 25	6 × 5 + 1 31	6 × 6 + 1
De 7 en 7	7 × 1 + 2	7 × 2 + 2	$7 \times 3 + 2$	$7 \times 4 + 2$	$7 \times 5 + 2$	7 × 6 + 2
sobra 1	9	16	23	30	37	44

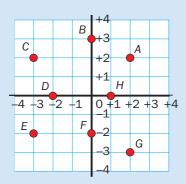
El número de muñecas que tiene Lourdes es el número que está en ambas filas, ya que cumple las dos condiciones del enunciado. Es el número 37.

Solución: Lourdes tiene 37 muñecas.

- 1. Pedro tiene menos de 60 canciones en su mp3. Si las agrupa de 7 en 7, le sobran 3, y si las agrupa de 8 en 8, le quedan 4. ¿Cuántas canciones tiene Pedro en su mp3?
- 2. En una cesta hay huevos. Son menos de 60. Al agruparlos en docenas sobran 7, mientras que al agruparlos de 5 en 5 no sobra ninguno. ¿Cuántos huevos hay en la cesta?
- 3. Un cuento tiene menos de 35 páginas. Al agruparlas de 2 en 2 no sobra ninguna, al agruparlas de 3 en 3 tampoco sobra ninguna y al agruparlas de 4 en 4 sobran 2. ¿Cuántas páginas tiene el cuento? ¿Hay más de una solución?
- **4. INVENTA.** Escribe un problema que pueda resolverse con una tabla. Puedes hacerlo similar a los problemas de esta página.

EJERCICIOS

- 1. Completa las oraciones.
 - La potencia 3⁵ se lee ... Su base es ... y su ... es 5.
 - El cuadrado de 6 es ... y la raíz cuadrada de ... es 6.
 - La raíz cuadrada de 49 es ... y el cuadrado de ... es 49.
- 2. Calcula.
 - $\sqrt{25}$ $\sqrt{16}$ $\sqrt{100}$ $\sqrt{64}$


- 3. ESTUDIO EFICAZ. Copia y completa el esquema.

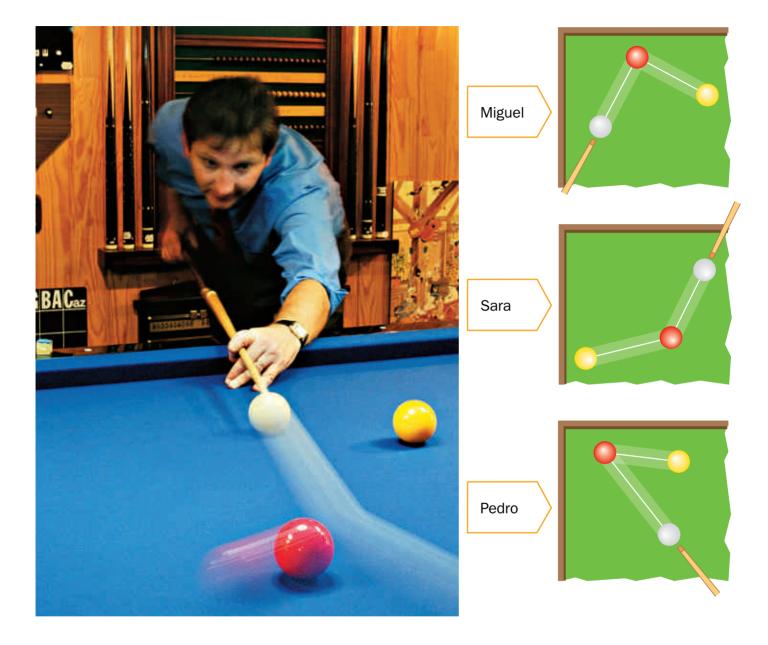
NÚMEROS ENTEROS

Enteros positivos: +1, +2... Situados en la recta entera a la ...

Enteros negativos: ... Situados en la recta ...

- 4. Ordena de menor a mayor.
 - \bullet +6, -4, 0, -5
 - −11. +1. −8. +3. −1
 - \bullet +4, -7, +8, -2, 0, +6
- 5. Escribe las coordenadas cartesianas de cada punto.

6. Coloca los números para que las dos igualdades sean ciertas.


PROBLEMAS

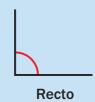
- 7. Marta baja de su casa al segundo piso del garaje. Coge la caja de herramientas que está en el maletero de su coche y sube 7 pisos para ir al trastero. ¿En qué piso está el trastero de Marta?
- 8. Elsa ha hecho una alfombra cuadrada cosiendo 64 piezas de tela cuadradas. ¿Cuántas piezas hay en cada lado de la alfombra?

- 9. Petra anotó 12 puntos en el partido de baloncesto, Laura el doble que ella y Manuel un cuarto de los puntos de Laura. ¿Cuántos puntos anotaron entre los tres?
- **10.** En una tienda compraron 16 portátiles a 725 € cada uno y, un mes después, otros 12 a 630 € cada uno. Más tarde, vendieron todos los ordenadores a 700 € cada uno. ¿Perdieron o ganaron dinero? ¿Cuántos euros fueron?
- **11.** Luis compró 125 litros de aceite por 500 €. Subió 1 € el precio de cada litro y vendió 90 litros. ¿Cuánto dinero obtuvo por la venta?

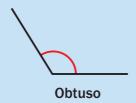
Miguel, Sara y Pedro están jugando una partida de billar. El juego consiste en conseguir el mayor número posible de carambolas, es decir, que la bola que se golpea con el taco dé a las otras dos.

Antes de hacer una tirada, para colocar el taco correctamente, cada jugador piensa en el ángulo que debe seguir la bola a la que va a dar.

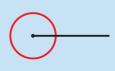
Fíjate en las tres jugadas de la ilustración. La bola blanca ha seguido distintos ángulos y en los tres casos se ha hecho carambola.


- ¿Cuánto mide el ángulo que ha seguido la bola blanca en cada jugada? ¿Qué tipo de ángulo es: recto, agudo u obtuso?
- Si Miguel hubiese dado con la bola blanca a la amarilla y luego a la roja, ¿qué tipo de ángulo habría seguido la bola blanca?
- ¿Y si Pedro hubiese dado con la bola blanca a la bola amarilla antes que a la roja?

RECUERDA LO QUE SABES

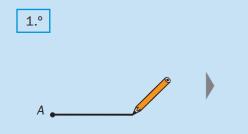

Tipos de ángulos


Mide menos de 90°.

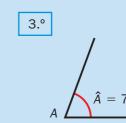

Mide 90°.

Mide más de 90° y menos de 180°.

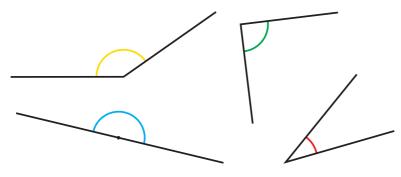
Mide 180°.


Completo

Mide 360°.


Trazado de un ángulo

Para trazar un ángulo de 70°, sigue estos pasos:


- 1.º Dibuja una semirrecta con origen el punto A.
- 2.º Coloca el transportador de manera que su centro coincida con el punto A y la semirrecta pase por 0°, y dibuja una rayita en la medida 70° del transportador.
- 3.º Dibuja otra semirrecta con origen el punto A que pase por la rayita marcada.

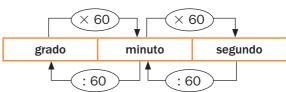
1. Mide estos ángulos y clasifícalos.

- 2. Dibuja un ángulo de cada tipo: agudo, recto, obtuso, llano y completo.
- 3. Traza estos ángulos.

 - $\hat{A} = 20^{\circ}$ $\hat{C} = 45^{\circ}$ $\hat{E} = 168^{\circ}$
- - $\hat{B} = 100^{\circ}$ $\hat{D} = 135^{\circ}$ $\hat{F} = 180^{\circ}$

VAS A APRENDER

- A reconocer las unidades de medida de ángulos y sus equivalencias.
- A dibujar y calcular la medida del ángulo suma o diferencia de dos ángulos dados.
- A reconocer ángulos complementarios y suplementarios.
- A medir y trazar ángulos de más de 180°.


Unidades de medida de ángulos

Para medir o dibujar ángulos, utilizamos el transportador y expresamos su medida en grados.

A veces, necesitamos expresar una medida con mayor precisión; entonces, utilizamos dos unidades menores que el grado: el minuto y el segundo.

El ángulo \hat{P} mide 65 grados, 42 minutos y 18 segundos. \triangleright $\hat{P} = 65^{\circ}$ 42' 18" El ángulo \hat{P} mide entre 65° y 66°.

El grado, el minuto y el segundo forman un sistema sexagesimal: cada unidad es 60 veces mayor que la unidad inmediata inferior.

Las unidades de medida de ángulos son: el grado (°), el minuto (') y el segundo ("). Estas unidades forman un sistema sexagesimal.

$$1' = 60"$$
 $1^{\circ} = 60' = 3.600"$

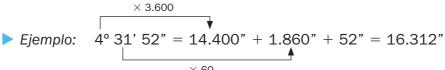
1. Lee la medida de cada ángulo e indica entre qué dos medidas en grados está.

 $\hat{A} = 42^{\circ} 37' 9'' \rightarrow \text{El ángulo } \hat{A} \text{ mide } \dots \text{ grados, } \dots \text{ minutos y } \dots \text{ segundos.}$ El ángulo mide entre ... y ... grados.

$$\hat{B} = 80^{\circ} 23' 50"$$

$$\hat{C} = 94^{\circ} 7' 36"$$
 $\hat{D} = 128^{\circ} 41'$ $\hat{E} = 159^{\circ} 27"$

$$\hat{D} = 128^{\circ} 41'$$


$$\hat{E} = 159^{\circ} 27^{"}$$

2. Calcula y expresa en la unidad indicada.

En minutos

- 17°
- 42°
- 9° 26'
- 38° 54'
- 41° 7'

En segundos

- 24'
- 39°
- 64' 45"
- 5° 34'
- 7° 21' 50"

- 70'
- 81°
- 18° 27"
- 42° 15' 29"

3. Calcula y completa.

4. Calcula y expresa en las unidades que se indican.

HAZLO ASÍ

• ¿Cuántos minutos y segundos son 456"?

• ¿Cuántos grados y minutos son 582'?

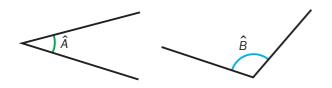
• ¿Cuántos grados, minutos y segundos son 19.791"?

5. Resuelve.

PRESTA ATENCIÓN

Las unidades de tiempo: horas, minutos y segundos, también forman un sistema sexagesimal.

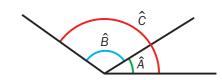
- Un concierto duró 135 minutos. ¿Cuántas horas y minutos duró el concierto?
- Lucas habló por teléfono durante 3 minutos y 7 segundos.
 ¿Cuántos segundos duró la llamada?
- Un corredor de maratón tardó 12.603 segundos en llegar a la meta. ¿Cuántas horas, minutos y segundos estuvo corriendo?


CÁLCULO MENTAL

Divide un número natural entre decenas y centenas

40:20	150:30	800 : 400	2.400 : 200
90:30	240 : 40	600 : 200	2.800 : 700
700:70	5.000:50	3.000 : 300	80.000 : 800
900:90	3.600:60	7.000 : 700	25.000 : 500

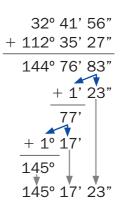
Suma de ángulos

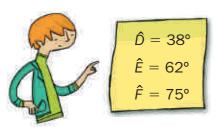


Alba y Daniel suman los ángulos \hat{A} y \hat{B} .

$$\hat{A} = 32^{\circ} 41' 56"$$

$$\hat{B} = 112^{\circ} 35' 27''$$


- Alba dibuja el ángulo suma $\hat{A} + \hat{B}$.
 - 1.º Dibuja el ángulo \hat{A} .
 - 2.º Dibuja el ángulo \hat{B} como en el dibujo de la derecha. Fîjate en que \hat{A} y \hat{B} tienen el vértice y un lado común.


El ángulo suma $\hat{A} + \hat{B}$ es el ángulo \hat{C} .

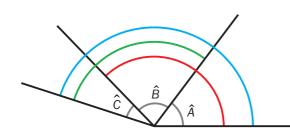
- Daniel calcula la medida del ángulo suma Ĉ.
 - 1.º Escribe la medida de los ángulos \hat{A} y \hat{B} de manera que coincidan en columna las unidades del mismo orden y suma cada columna por separado.
 - $2.^{\circ}$ Como $83^{\circ} > 60^{\circ}$, pasa 83° a minutos y segundos ($83^{\circ} = 1^{\circ} 23^{\circ}$). Después, suma los minutos (76' + 1' = 77').
 - 3.° Como 77' > 60', pasa 77' a grados y minutos (77' = 1° 17'). Después, suma los grados ($144^{\circ} + 1^{\circ} = 145^{\circ}$).

El ángulo Ĉ mide 145° 17' 23".

1. Calcula cuánto mide cada ángulo suma. Después, dibuja los ángulos con el transportador y comprueba.

$$\hat{D} + \hat{E}$$
 $\hat{D} + \hat{F}$ $\hat{E} + \hat{F}$
 $\hat{E} + \hat{O}$ $\hat{E} + \hat{O}$ $\hat{E} + \hat{E}$

$$\hat{D} + \hat{F}$$


$$\hat{E} + \hat{F}$$

$$\hat{E} + \hat{D}$$
 $\hat{F} + \hat{D}$

$$\hat{F} + \hat{D}$$

$$\hat{F} + \hat{E}$$

- Si cambias el orden de los ángulos que sumas, ¿cambia la medida del ángulo suma?
- 2. Observa la figura y calcula cuánto miden los ángulos rojo, verde y azul.

$$\hat{A} = 53^{\circ}$$

$$\hat{B} = 81^{\circ}$$

$$\hat{C} = 28^{\circ}$$

- Ángulo rojo = $\hat{A} + \hat{B} \triangleright ...^{\circ} + ...^{\circ} = ...^{\circ}$
- Ángulo verde = ... + ... ▶ ...°
- Ángulo azul = ... + ... + ... ▶ ...°

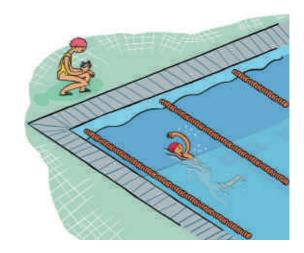
3. Calcula las siguientes sumas de ángulos.

48° 15' 27"	36° 20′ 54″	73° 48' 12"
+ 95° 41' 26"	+ 102° 19′ 47″	+ 124° 37' 26"
80° 36′ 24″	95° 42′ 17"	120° 27' 54"
+ 137° 52′ 43″	+ 158° 35′ 43"	+ 117° 32' 46"

4. Calcula la medida del ángulo suma.

PRESTA ATENCIÓN

Si falta alguna unidad, escribe 00 en su lugar y haz la operación.


$$\hat{K} = 107^{\circ} 32' 29'' + 58^{\circ} 45''$$

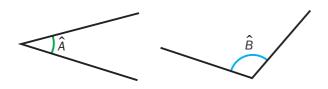
 $\hat{L} = 98^{\circ} 25' + 65^{\circ} 37' 18''$
 $\hat{M} = 133^{\circ} 47'' + 48^{\circ} 52' 36''$

5. Resuelve.

RECUERDA

Las unidades de tiempo: hora, minuto y segundo, también forman un sistema sexagesimal.

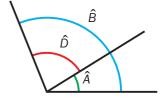
- En el intermedio de un programa de televisión han puesto dos anuncios que han durado 58 segundos y 2 minutos y 26 segundos, respectivamente. ¿Cuánto tiempo ha durado el intermedio?
- María tardó 1 minuto y 45 segundos en hacer un largo en una piscina. Lidia tardó 35 segundos más que ella. ¿Cuánto tardó Lidia?
- Pablo ha jugado esta semana dos partidos de tenis.
 El primer partido duró 2 horas y 13 minutos
 y el segundo, 1 hora y 57 minutos. ¿Cuánto tiempo duraron en total los dos partidos?
- En una carrera ciclista, el ganador consiguió pasar la meta en 3 horas, 49 minutos y 25 segundos. Su compañero de equipo tardó 14 minutos y 51 segundos más que él. ¿Cuánto tiempo tardó su compañero en llegar a la meta?


6. RAZONAMIENTO. Piensa y contesta.

Después, escribe un ejemplo que demuestre cada respuesta.

- Si se suman dos ángulos agudos, el ángulo suma ¿puede ser agudo? ¿Y recto? ¿Y obtuso? ¿Y llano?
- Si se suma un ángulo recto y un ángulo agudo, ¿de qué tipo es el ángulo suma?
- Si se suman dos ángulos rectos, ¿de qué tipo es el ángulo suma?

Resta de ángulos



Sergio y Natalia restan el ángulo al ángulo B.

$$\hat{A} = 32^{\circ} 41' 56''$$

$$\hat{B} = 112^{\circ} 35' 27''$$

- Sergio dibuja el ángulo diferencia $\hat{B} \hat{A}$.
 - 1.º Dibuja el ángulo \hat{B} .
 - $2.^{\circ}$ Dibuja el ángulo \hat{A} como se ve en el dibujo de la derecha. Fíjate en que \hat{A} y \hat{B} tienen el vértice y un lado común.

El ángulo diferencia $\hat{B} - \hat{A}$ es el ángulo \hat{D} .

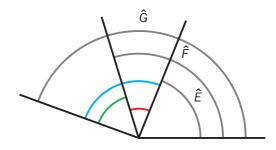
- Natalia calcula la medida del ángulo diferencia D.
 - 1.º Escribe la medida de los ángulos \hat{B} y \hat{A} de manera que coincidan en columna las unidades del mismo orden.
 - 2.º Resta los segundos. Como no puede, pasa 1 minuto del minuendo a segundos $(35'\ 27'' = 34'\ 87'')$. Después, resta los segundos (87'' - 56'' = 31'').
 - 3.º Resta los minutos. Como no puede, pasa 1 grado del minuendo a minutos $(112^{\circ} 34' = 111^{\circ} 94')$. Después, resta los minutos (94' - 41' = 53').
 - 4.° Resta los grados (111° -32° = 79°).

El ángulo \hat{D} mide 79° 53' 31".

1. Calcula cuánto mide cada ángulo diferencia.

$$83^{\circ} - 27^{\circ}$$

$$90^{\circ} - 48^{\circ}$$


$$124^{\circ} - 65^{\circ}$$

- Dibuja los ángulos con el transportador y comprueba tus cálculos.
- 2. Observa la figura y calcula cuánto miden los ángulos rojo, verde y azul.

$$\hat{E} = 68^{\circ}$$
 $\hat{F} = 107^{\circ}$ $\hat{G} = 160^{\circ}$

$$\hat{G} = 160^{\circ}$$

- Ángulo rojo = $\hat{F} \hat{E}$...° ...° = ...°
- Ángulo verde = ▶ ...°
- Ángulo azul = ▶ ...°

3. Calcula estas restas de ángulos.

94° 40′ 38″ - 75° 16′ 21″

• 126° 18' 30" - 87° 25' 17"

• 137° 23' 7" - 15° 21' 38"

• 172° 38' 43" - 125° 46' 50"

4. Calcula las siguientes restas de ángulos.

RECUERDA

Si falta alguna unidad, escribe 00 en su lugar.

$$\hat{P} = 78^{\circ} 45' 20'' - 35^{\circ} 17'$$

 $\hat{P} = 78^{\circ} 45' 20'' - 35^{\circ} 17'$ $\hat{R} = 118^{\circ} 29' - 83^{\circ} 5' 42''$

$$\hat{Q} = 65^{\circ} 28' 34'' - 47^{\circ} 53''$$

$$\hat{Q} = 65^{\circ} 28' 34'' - 47^{\circ} 53''$$
 $\hat{S} = 124^{\circ} 52'' - 93^{\circ} 13' 26''$

5. Observa el ejemplo y calcula.

HAZLO ASÍ

$$\hat{K} = 129^{\circ} 37" - 58^{\circ} 12' 40"$$

•
$$\hat{L} = 142^{\circ} 18'' - 65^{\circ} 53' 24''$$

•
$$\hat{M} = 173^{\circ} 37'' - 108^{\circ} 21' 56''$$

6. Resuelve.

Recuerda que las unidades de tiempo: horas, minutos y segundos, se suman y se restan igual que las unidades de medida de ángulos.

- Olga ha grabado una película que dura 1 hora y 43 minutos en una cinta de 3 horas. ¿Cuánto tiempo de cinta queda sin grabar?
- En una carrera popular, Alba llegó a la meta en 2 horas, 43 minutos y 18 segundos, y Lucas, en 3 horas, 9 minutos y 58 segundos. ¿Cuánto tiempo tardó Lucas más que Alba?
- El ordenador de Milagros hace cada 5 minutos una copia de lo que ella está escribiendo para que no se pierda. Hace 2 minutos y 19 segundos, el ordenador grabó una copia. ¿Cuánto tiempo falta para que grabe la siguiente?

CÁLCULO MENTAL

Calcula la fracción de un número

$$\begin{array}{c}
\frac{2}{3} \text{ de } 30 \\
\hline
30 \xrightarrow{\times 2} 60 \xrightarrow{:3} 20
\end{array}$$

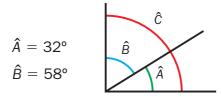
$$\frac{1}{5}$$
 de 20 $\frac{1}{7}$ de 42 $\frac{2}{5}$ de 30 $\frac{2}{3}$ de 18

$$\frac{1}{7}$$
 de 42

$$\frac{2}{5}$$
 de 30

$$\frac{2}{3}$$
 de 18

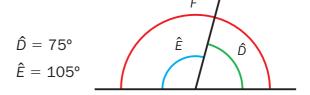
$$\frac{1}{6}$$
 de 36 $\frac{1}{9}$ de 63 $\frac{3}{4}$ de 12 $\frac{3}{5}$ de 15


$$\frac{1}{9}$$
 de 63

$$\frac{3}{4}$$
 de 12

$$\frac{3}{5}$$
 de 15

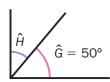
Ángulos complementarios y suplementarios

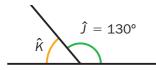

Observa en cada caso cuánto mide el ángulo suma.

$$\hat{C} = \hat{A} + \hat{B} = 32^{\circ} + 58^{\circ} = 90^{\circ}$$

El ángulo suma Ĉ es un ángulo recto.

 \hat{A} y \hat{B} son ángulos complementarios.


$$\hat{F} = \hat{D} + \hat{E} = 75^{\circ} + 105^{\circ} = 180^{\circ}$$

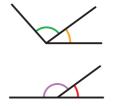

El ángulo suma \hat{F} es un ángulo llano.

 \hat{D} y \hat{E} son ángulos suplementarios.

- Dos ángulos son complementarios si su suma es igual a 90°.
- Dos ángulos son suplementarios si su suma es igual a 180°.

1. Observa los ángulos y contesta.

- ¿Cómo son los ángulos \hat{G} y \hat{H} : complementarios o suplementarios? ¿Por qué?
- ¿Cuánto mide el ángulo Ĥ? ¿Cómo lo has calculado?
- ¿Cómo son los ángulos \hat{J} y \hat{K} : complementarios o suplementarios? ¿Por qué?
- ¿Cuánto mide el ángulo R? ¿Cómo lo has calculado?


2. Calcula el ángulo que se indica.

El ángulo • 27° • 81° 34′ • 63° • 40° 15′ 50″

3. Piensa y contesta.

RECUERDA

- Los ángulos consecutivos tienen el vértice y un lado común.
- Los ángulos adyacentes son ángulos consecutivos cuyos lados no comunes están en la misma recta.

- Dos ángulos consecutivos:
 - ¿Pueden ser complementarios?
 - ¿Son siempre complementarios?
 - ¿Pueden ser suplementarios?
- Dos ángulos adyacentes:
 - ¿Pueden ser complementarios?
 - ¿Son siempre suplementarios?

Ángulos de más de 180°

El ángulo mide más de 180°.

Puedes medir el ángulo de dos formas distintas.

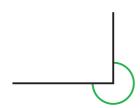
1.º Prolonga uno de los lados del ángulo \hat{A} y mide con el transportador el ángulo \hat{B} .

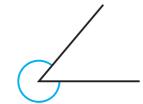
$$\hat{B} = 45^{\circ}$$

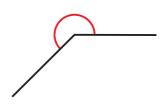
2.º Calcula la medida del ángulo Â.

$$\hat{A} = 180^{\circ} + \hat{B} = 180^{\circ} + 45^{\circ} = 225^{\circ}$$

1.º Mide con el transportador el ángulo Ĉ.

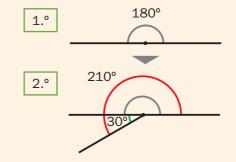

$$\hat{C} = 135^{\circ}$$


2.º Calcula la medida del ángulo Â.


$$\hat{A} = 360^{\circ} - \hat{C} = 360^{\circ} - 135^{\circ} = 225^{\circ}$$

El ángulo mide 225°.

1. Calcula la medida de estos ángulos de más de 180° y explica cómo lo haces.

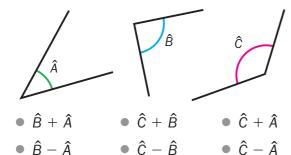

TALLER

Trazado de ángulos de más de 180°

Para dibujar un ángulo de 210°:

- 1.º Dibuja un ángulo de 180º.
- 2.° Traza un ángulo de 30° ($210^{\circ} 180^{\circ}$) con el mismo vértice.

El ángulo rojo mide 210°.

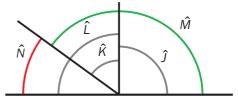

- 2. Traza un ángulo de 220° y otro de 235°.
- 3. Traza un ángulo de 60° y contesta.
 - ¿Se te ocurre alguna forma rápida de obtener un ángulo de 300°?

Actividades

1. Expresa en las unidades indicadas.

2. Calca y dibuja los ángulos que se indican.

Marca los ángulos suma o diferencia de color rojo.


3. Calcula y comprueba.

Mide los ángulos \hat{A} , \hat{B} y \hat{C} de la actividad 2, halla la medida de cada ángulo suma y ángulo diferencia, y comprueba tus dibujos.

4. Calcula estas sumas de ángulos.

5. Calcula estas restas de ángulos.

6. Observa los ángulos dados y calcula cuánto miden los ángulos \hat{M} y \hat{N} .

$$\hat{J} = 90^{\circ}$$
 $\hat{K} = 54^{\circ} 26' 14''$ $\hat{L} = 90^{\circ}$

Observa el dibujo de la actividad 6 y escribe dos ángulos complementarios y dos suplementarios.

8. ESTUDIO EFICAZ. Completa las oraciones y traza un ejemplo en cada caso.

- Dos ángulos son complementarios ...
- Dos ángulos son suplementarios ...

9. Calcula.

El ángulo complementario

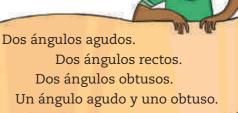
•
$$\hat{P} = 50^{\circ}$$

•
$$\hat{0} = 67^{\circ} 12'$$

•
$$\hat{R} = 37^{\circ} 25' 48''$$

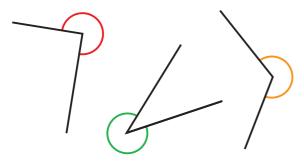
•
$$\hat{S} = 64^{\circ} 39^{\circ}$$

El ángulo suplementario


•
$$\hat{T} = 99^{\circ}$$

•
$$\hat{U} = 132^{\circ} 36'$$

•
$$\hat{V} = 78^{\circ} 5' 23''$$


•
$$\hat{W} = 45^{\circ} 50^{\circ}$$

10. Piensa y contesta.

- ¿Qué parejas de ángulos pueden ser ángulos complementarios?
- ¿Qué parejas de ángulos pueden ser ángulos suplementarios?

11. Mide los siguientes ángulos.

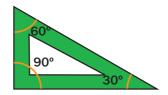
12. Dibuja estos ángulos.

• $\hat{D} = 210^{\circ}$ • $\hat{F} = 270^{\circ}$ • $\hat{H} = 340^{\circ}$

13. Dibuja un triángulo que tenga un ángulo recto y otro de 50°.

• ¿Cuánto mide el tercer ángulo?

14. Resuelve.


- Una máquina tiene un contador que indica el tiempo de funcionamiento.
 Ahora marca 24.673 segundos.
 ¿Cuántas horas, minutos y segundos lleva funcionando?
- Antonio hizo un viaje en tren que debía durar 4 horas y 48 minutos.
 Por una avería, ha llegado con 1 hora y 23 minutos de retraso. ¿Cuánto tiempo duró el viaje?
- En una prueba de esquí, Paula tenía como mejor marca 7 minutos y 3 segundos. Hoy la ha rebajado en 5 segundos. ¿En cuánto tiempo ha hecho la prueba?

ERES CAPAZ DE...

Trazar ángulos con escuadra y cartabón

Recuerda cuánto miden los ángulos de una escuadra y de un cartabón.

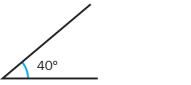
 Dibuja los siguientes ángulos, repasando dos lados de una escuadra o un cartabón.

 Dibuja estos ángulos utilizando una escuadra y un cartabón.

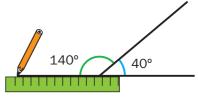
Piensa qué dos ángulos debes sumar.

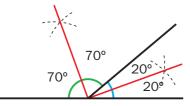
 $75^{\circ} = 45^{\circ} + 30^{\circ}$

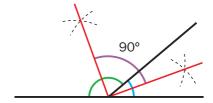
Solución de problemas


Hacer un dibujo

En algunos problemas, sobre todo geométricos, es útil hacer un dibujo que represente el enunciado. Resuelve estos problemas de esa manera.


Montse ha dibujado un ángulo de 40° y su ángulo suplementario. Después, ha trazado las bisectrices de los dos ángulos. ¿Qué ángulo forman esas bisectrices?


- Hacemos el dibujo siguiendo las condiciones del enunciado. Trazamos los dos ángulos y sus bisectrices y medimos el ángulo que forman.
 - 1.º Dibujamos el ángulo de 40°.


2.º Dibujamos el ángulo suplementario alargando un lado.

3.º Trazamos las bisectrices de los dos ángulos.

4.º Medimos el ángulo que forman las dos bisectrices: es 90°.

Solución: El ángulo formado por las dos bisectrices mide 90°.

- **1.** Luisa ha dibujado un ángulo de 80° y su suplementario, y ha trazado sus bisectrices. ¿Qué ángulo forman las bisectrices de los dos ángulos?
- 2. Dibuja dos ángulos suplementarios, los que quieras, y traza sus bisectrices. ¿Qué ángulo forman? ¿Ocurre igual en cualquier pareja de ángulos suplementarios?
- 3. Marta dibuja un ángulo de 60° y su complementario. Después, traza las bisectrices de los dos ángulos. ¿Qué ángulo forman esas bisectrices? ¿Ocurre igual en cualquier pareja de ángulos complementarios?

EJERCICIOS

- 1. Escribe cómo se lee cada número. Después, halla su descomposición.
 - 102.468
- 34.520.127
- 7.400.056
- 705.032.091
- 2. Ordena de mayor a menor cada grupo de números.
 - 235.120, 234.999, 240.000, 30.000, 235.200
 - 6.045.098, 6.050.000, 700.000, 7.000.024, 6.045.100
- 3. Expresa cada producto como una potencia y escribe cómo se lee.
 - 4 × 4 × 4
- 3 × 3 × 3 × 3
- 9 × 9
- 8 × 8 × 8 × 8 × 8 × 8
- 4. Completa.

$$7^2 = \dots \text{ y } \sqrt{49} = \dots$$
 $\sqrt{36} = \dots \text{ y } \dots = 36$
 $5^2 = \dots \text{ y } \sqrt{25} = \dots$ $\sqrt{81} = \dots \text{ y } \dots = 81$

- 5. Ordena cada grupo de menor a mayor.
 - −7, −11, +4, −6
 - −2, −3, −6, −8, −4
 - +3, +9, 0, -2
 - 0, +6, -7, +5, -9
- 6. ESTUDIO EFICAZ. Contesta.
 - ¿Es 18 múltiplo de 6? ¿Por qué?
 - ¿Es 6 divisor de 18? ¿Por qué?
 - ¿Qué es el m.c.d. de dos números?
 - ¿Qué es el m.c.m. de dos números?
- 7. Calcula.
 - Cuatro múltiplos de 7.m.c.d (12 y 20)
 - Tres divisores de 24.m.c.m (9 y 12)

PROBLEMAS

- 8. Maite va al dentista cada 4 meses y Luis, cada 9 meses. Hoy han coincidido. ¿Cuánto tiempo pasará hasta que vuelvan a coincidir?
- 9. Manuela estaba en la primera planta del garaje. Subió cuatro pisos en ascensor hasta su casa y luego bajó dos pisos hasta la casa de su amiga Petra. ¿En qué pisos viven Manuela y Petra?
- 10. Una urbanización tiene 4 bloques, cada bloque tiene 4 plantas, en cada planta hay 4 viviendas y cada vivienda tiene 4 habitaciones. ¿Cuántas habitaciones hay en los bloques de la urbanización?
- El mes pasado entraron a unas cuevas 5 grupos de 78 personas y 2 grupos de 57 personas. Este mes se dejará entrar al mismo número total de personas, pero formando 6 grupos iguales. ¿Cuántos visitantes tendrá cada grupo?

- 12. Leonor vendió 36 pulseras en la feria de artesanía. La mitad las vendió a 25 € cada una, un tercio a 19 € cada una y el resto las vendió a 18 € cada una. ¿Cuánto obtuvo Leonor por la venta de las pulseras?
- 13. Carmen vio una enciclopedia de 15 tomos iguales que costaba 390 €. Al comprarla, por pagar al contado, el dueño de la librería le rebajó 45 €. ¿Cuánto le costó cada tomo de la enciclopedia?

Repaso trimestral

NÚMEROS

Descompón cada número.

9.805.071

• 304.080.150

• 786.000.903

• 40.062.500

• 460.128.007

936.410.020

2. Escribe.

Con letras

- 27.560.000
- 168.051.200
- 594.307.085
- 903.062.040

Con cifras

- Doscientos nueve millones cincuenta mil seiscientos treinta y uno.
- Cuatrocientos ochenta y siete millones ciento noventa y seis.
- Seiscientos millones guinientos guince mil trescientos setenta.
- Novecientos veinticuatro millones sesenta y ocho mil dos.

3. Ordena cada grupo de números como se indica.

- De mayor a menor: 29.650.792
- 28.109.200
- 179.536.048 179.507.960
- De menor a mayor: 341.287.000 348.095.068 341.576.048 39.100.289 279.250.800
- 4. Expresa cada producto en forma de potencia y escribe cómo se lee.
 - 5 × 5 × 5

• 7 × 7

 \bullet 6 × 6 × 6 × 6 × 6 × 6 × 6

- 3 × 3 × 3 × 3
- \bullet 9 \times 9 \times 9 \times 9 \times 9
- 8 × 8 × 8 × 8 × 8 × 8

5. Escribe la expresión polinómica de cada número.

85.473

• 4.007.952

280.560.370

320.609

• 76.803.041

906.047.158

6. Dibuja una recta entera y representa estos números. Después, completa.

$$+3$$
 -4 0 $+2$ -1 $+5$

- A la izquierda de 0 se encuentran los números...
- A la derecha de 0 se encuentran los números...

7. Expresa con números enteros.

- La cuarta planta de un edificio y el segundo sótano subterráneo.
- El nivel del mar y una profundidad de 200 metros.
- Una temperatura de 30 °C y otra de 5 °C bajo cero.

8. Compara y escribe el signo > o <.

- +4 () +7
- 0 () -2
- -1 + 1
- +3 −5

- -3 () -6
- 0 () +1
- +8 −8
- $-4 \cap +2$

9. Dibuja unos ejes de coordenadas cartesianas y representa estos puntos.

$$A \triangleright (-1, +3)$$

$$C \triangleright (+4, +1)$$

$$E \triangleright (-3, -4)$$

$$G \triangleright (+3, -1)$$

$$B \triangleright (-2, -2)$$

$$D \triangleright (+1, -2)$$

$$F \triangleright (+2, +1)$$

$$H \triangleright (-4, +2)$$

• Representa un punto *J* sobre el eje vertical y otro punto *K* sobre el eje horizontal. Escribe las coordenadas de ambos puntos.

10. Contesta y explica por qué.

¿Es 13 un número primo? ¿Es 18 un número primo?

OPERACIONES

1. Calcula el término que falta.

2. Calcula.

•
$$2 \times (6 + 9)$$
 • $(3 + 4) \times 2 - 5$

•
$$(4 + 5) \times (8 - 2)$$

•
$$30 - 10:5$$
 • $45:9 - (7 - 6)$ • $20 - 5 \times (12:4)$ • $9 + 16:2 - 3 \times 5$

3. Calcula.

 2^{7}

1⁶

4³

$$\sqrt{9}$$

$$\sqrt{9}$$
 $\sqrt{1}$ $\sqrt{64}$

$$\sqrt{25} \qquad \sqrt{49}$$

$$\sqrt{100} \qquad \sqrt{36}$$

4. Escribe.

- Los seis primeros múltiplos de 8.
- Cinco múltiplos de 9 mayores que 70 y menores que 130.
- Cuatro divisores de 20 y cinco de 30.
- Todos los divisores de 15 y de 24.

5. Calcula.

• El mínimo común múltiplo:

El máximo común divisor:

Repaso trimestral

6. Calcula las siguientes sumas y restas de ángulos.

- 34° 35' 57" + 48° 12' 36"
- 120° 28' 43" + 71° 54"
- 135° 39' + 142° 47' 16"

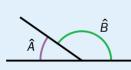
- 87° 42' 19" 35° 26' 51"
- 143° 5' 38" 76° 41'
- 170° 34" 128° 16' 45"

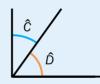
7. Calcula y escribe para cada ángulo.

El ángulo complementario

- 56°
- 37° 43'
- 20° 19' 36"

- El ángulo suplementario
- 72°
- 97° 25'
- 146° 7' 58"


GEOMETRÍA


1. Observa la figura y completa.

- Ángulo rosa + ángulo azul = ángulo ...
- Ángulo naranja ángulo morado = ángulo ...
- Ángulo azul + ángulo rosa + ángulo morado = ...
- Ángulo rojo = ángulo azul + ángulo ...
- Ángulo verde = ángulo rojo ángulo ...

2. Observa las figuras y contesta.

- ¿Cómo son los ángulos y B?
- ¿Y los ángulos Ĉ y D̂?

3. Mide y contesta.

- ¿Cuánto mide el ángulo Ê?
- ¿Y el ángulo Â?

4. Traza los siguientes ángulos.

- ► rectoB̂ ► Ilano
- Ĉ = 35°
- $\hat{D} = 100^{\circ}$
- Ê = 162°
- \hat{G} y \hat{H} complementarios
- $\hat{F} = 200^{\circ}$
- Ĵ y k → suplementarios

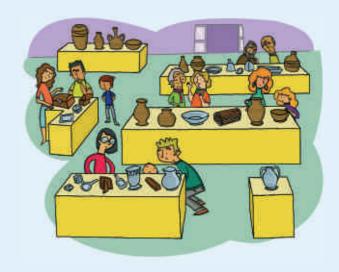
CÁLCULO MENTAL

$$70 - 8 \times 5$$

$$5 + (9 - 2)$$

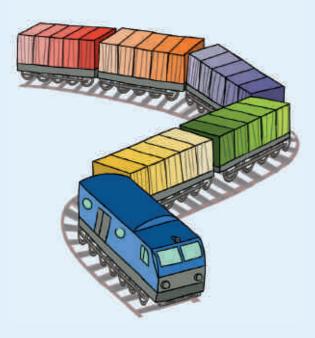
$$(4 + 5) \times 20$$

$$3.457 + 2.001$$


$$6.708 + 997$$

$$\frac{2}{7}$$
 de 28

PROBLEMAS


1. Resuelve.

- En una exposición de artesanía se muestran 1.254 trabajos. De ellos, un tercio son de barro, de madera hay la mitad que de barro y el resto son de metal. ¿Cuántos trabajos de metal hay en la exposición?
- En un armario hay 6 cajones. En cada cajón hay 6 camisas, con 6 botones cada una.
 ¿Cuántos botones tienen en total las camisas que hay en el armario?
- Un mosaico cuadrado está formado por 49 azulejos iguales. ¿Cuántos azulejos hay en cada lado del mosaico?

- Claudia está en la segunda planta de unos grandes almacenes. Sube una planta para hacer una compra y después baja 5 para coger el coche. ¿En qué planta tenía Claudia el coche?
- Patricia compra una revista cada 15 días y una novela cada 20 días. Hoy ha comprado las dos cosas.
 ¿Cuántos días pasarán hasta que vuelva a comprarlas juntas por primera vez?
- El tablero de un juego tiene forma cuadrada con 12 casillas iguales en cada lado. ¿Cuántas casillas tiene el tablero?
- Dentro de una casa la temperatura es +18 °C y en la calle es -3 °C. ¿Cuántos grados es mayor la temperatura interior que la exterior?
- Un tren tiene 5 vagones. En cada vagón transporta
 5 contenedores, con 5 cajas en cada uno. Cada caja
 tiene 5 estuches con 5 figuras de porcelana cada uno.
 ¿Cuántas figuras de porcelana transporta el tren?
- Ana quiere repartir en platos 48 empanadillas de atún y 36 de carne, de manera que en cada plato haya el mismo número de empanadillas, todas del mismo sabor, y que no sobre ninguna. ¿Cuántas empanadillas como máximo puede poner en cada plato?
- Una furgoneta de reparto lleva cajas de tabletas de turrón. En 43 de las cajas hay 36 tabletas en cada una y en el resto hay 24 tabletas en cada una. Deja en una tienda 228 tabletas y aún le quedan por entregar 1.776 tabletas. ¿Cuántas cajas de 24 tabletas había al principio en la furgoneta?

Fracciones

Esteban acaba de cambiarse de casa y ha invitado a algunos amigos para celebrarlo. Ha hecho dos tartas del mismo tamaño y las ha cortado en trozos iguales: la de manzana en 12 raciones y la de yema en 20.

- María ha cogido un trozo de tarta de manzana y Julián, un trozo de la tarta de yema.
 - ¿Qué fracción de tarta ha cogido cada uno? Escribe cada fracción y cómo se lee.
 - ¿Quién ha cogido un trozo mayor de tarta?
- Al final han sobrado $\frac{2}{12}$ de la tarta de manzana y $\frac{3}{20}$ de la tarta de yema. ¿Qué fracción de cada tarta se han comido? ¿Cuántos trozos eran?

RECUERDA LO QUE SABES

Fracción de un número

Para calcular la fracción de un número, multiplica el número por el numerador de la fracción y después divide dicho producto entre el denominador.

$$\frac{3}{4}$$
 de 20 = $\frac{3 \times 20}{4}$ = $\frac{60}{4}$ = 15

Fracciones equivalentes a un número natural

Si al dividir el numerador entre el denominador de una fracción la división es exacta, esa fracción es equivalente al cociente de la división.

$$\frac{10}{5} = 10:5 = 2$$

Mínimo común múltiplo y máximo común divisor de varios números

El mínimo común múltiplo (m.c.m.) de dos o más números es el menor múltiplo común, distinto de cero, de dichos números.

- 1.° Múltiplos de 4 ▶ 0, 4, 8, 12, 16, 20, 24... Múltiplos de 6 ▶ 0, 6, 12, 18, 24, 30...
- 2.º Múltiplos comunes ▶ 0, 12, 24...
- $3.^{\circ}$ m.c.m. (4 y 6) = 12

El máximo común divisor (m.c.d.) de dos o más números es el mayor divisor común de dichos números.

- 1.° Divisores de 16 ▶ 1, 2, 4, 8 y 16 Divisores de 20 ▶ 1, 2, 4, 5, 10 y 20
- 2.° Divisores comunes ▶ 1, 2 y 4
- $3.^{\circ}$ m.c.d. (16 y 20) = 4

1. Calcula.

•
$$\frac{5}{7}$$
 de 63

•
$$\frac{4}{9}$$
 de 54

•
$$\frac{5}{7}$$
 de 63 • $\frac{4}{9}$ de 54 • $\frac{7}{10}$ de 80

•
$$\frac{2}{5}$$
 de 135

•
$$\frac{5}{6}$$
 de 270

•
$$\frac{2}{5}$$
 de 135 • $\frac{5}{6}$ de 270 • $\frac{3}{8}$ de 392

2. Escribe el número natural equivalente a cada fracción.

3. Calcula.

- m.c.m. (3 y 9)m.c.d. (8 y 12)
- m.c.m. (8 y 10)m.c.d. (18 y 24)
- m.c.m. (5, 6 y 15)m.c.d. (30 y 42)

VAS A APRENDER

- A expresar fracciones como números mixtos y viceversa.
- A identificar y obtener fracciones equivalentes a una dada.
- Cómo reducir fracciones a común denominador por el método de los productos cruzados y del m.c.m.
- A comparar fracciones.

Fracciones y números mixtos

En la panadería de Isabel, venden bizcochos en porciones. Isabel parte cada bizcocho en 4 porciones iguales, es decir, en cuartos, y después los vende por separado. ¿Qué cantidad de bizcocho le queda por vender?

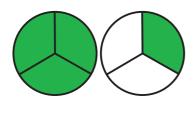
Le quedan por vender 11 cuartos.

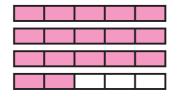
Fíjate: 11 cuartos son 2 bizcochos enteros y 3 cuartos de otro.

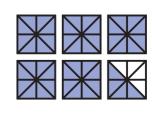
$$\frac{11}{4} = 2 + \frac{3}{4} = 2\frac{3}{4}$$

 $\frac{11}{4} = 2 + \frac{3}{4} = 2\frac{3}{4}$ La expresión $2\frac{3}{4}$ se llama **número mixto**.

¿Cómo se escribe una fracción en forma de número mixto?


$$\frac{11}{4} \quad \frac{11}{3} \quad \frac{4}{2} \quad \triangleright \frac{11}{4} = 2 \quad \frac{3}{4} \quad \leftarrow \text{ resto}$$


¿Cómo se escribe un número mixto en forma de fracción?


Un número mixto está formado por un número natural y una fracción.

Todas las fracciones mayores que la unidad que no son equivalentes a un número natural se pueden expresar en forma de número mixto.

1. En cada caso, escribe la fracción y el número mixto que representa la parte coloreada.

2. Copia en una hoja cuadriculada y representa. Después, escribe cada fracción en forma de número mixto y cada número mixto como una fracción.

3. Escribe cada fracción en forma de número mixto. Después, explica cómo lo haces.

$$\boxed{\frac{20}{3}} \qquad 20 \quad \boxed{3} \qquad \triangleright \quad \frac{20}{3} = \dots -$$

Divido el numerador entre ...

Después, escribo el número mixto:

- El número natural es el ... de la división.
- El numerador es ... de la división.
- El denominador es ... de la división.

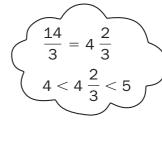
4. Escribe cada número mixto en forma de fracción. Después, explica cómo lo haces.

$$4\frac{3}{5} \quad 4 \times 5 + \dots = \dots \quad \bullet \quad 4\frac{3}{5} = -$$
Multiplico el número natural propués, escribo la fracción:
- El numerador es ...

Multiplico el número natural por ... y sumo ...

- El numerador es ...
- $2\frac{3}{7}$ $9\frac{2}{5}$ $6\frac{7}{8}$ $4\frac{5}{9}$ $10\frac{1}{6}$ El denominador es ...
- 5. Lee cada reparto y explica qué cantidad le corresponde a cada persona.
 - Ejemplo: Reparte 23 rosquillas entre 7 personas.

 $\frac{23}{7} = 3\frac{2}{7}$ A cada persona le corresponden 3 rosquillas enteras y $\frac{2}{7}$ de otra.



- Reparte 7 naranjas entre 4 personas.
- Reparte 12 chocolatinas entre 5 personas.
- Reparte 35 pasteles entre 6 personas.

6. Piensa cómo se expresa cada fracción en forma de número mixto y escribe la fracción en el lugar adecuado.

$$1 < \frac{\square}{\square} < 2 < \frac{\square}{\square} < 3 < \frac{\square}{\square} < 4 < \frac{14}{3} < 5 < \frac{\square}{\square} < 6$$

CÁLCULO MENTAL

Suma por compensación: suma y resta el mismo número a los dos sumandos para que el primero sea una decena

$$\begin{array}{c|c}
 & + 3 \\
\hline
 & 47 + 28 = 50 + 25 = 75 \\
\hline
 & - 3
\end{array}$$

49 + 36

Fracciones equivalentes

Manuel tiene cuatro helados iguales de fresa y vainilla. Corta cada helado en varias porciones iguales. ¿Qué fracción de cada helado es de fresa?

Es de fresa \triangleright $\frac{1}{2}$

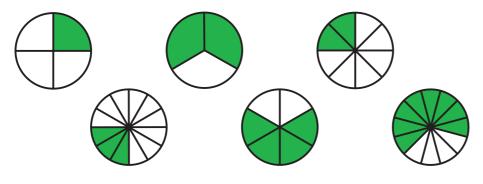
$$ightharpoonup \frac{1}{2}$$

Fíjate en que la cantidad de fresa es igual en los cuatro helados.

Por eso, las fracciones $\frac{1}{2}$, $\frac{2}{4}$, $\frac{3}{6}$ y $\frac{4}{8}$ son fracciones equivalentes \triangleright $\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{4}{8}$

Para comprobar si dos fracciones son equivalentes, multiplica sus términos en cruz. Si los productos obtenidos son iguales, las fracciones son equivalentes.

$$\frac{1}{2}$$
 y $\frac{3}{6}$ > 1 × 6 = 2 × 3 = 6


 $\frac{1}{2}$ y $\frac{3}{6}$ > 1 × 6 = 2 × 3 = 6 Como los productos son iguales, las fracciones son equivalentes.

$$\frac{1}{2} = \frac{3}{6}$$

Las fracciones equivalentes representan la misma parte de la unidad.

Si dos fracciones son equivalentes, los productos de sus términos en cruz son iguales.

 Escribe la fracción que representa la parte coloreada en cada figura. Después, busca las fracciones equivalentes y completa las igualdades.

•
$$\frac{1}{4} = \frac{\square}{\square} = \frac{\square}{\square}$$

2. Averigua si las siguientes fracciones son equivalentes.

$$\frac{1}{8}$$
 y $\frac{5}{40}$

$$\frac{3}{4}$$
 y $\frac{9}{16}$

$$\frac{1}{8}$$
 y $\frac{5}{40}$ $\frac{3}{4}$ y $\frac{9}{16}$ $\frac{2}{7}$ y $\frac{16}{56}$

$$\frac{20}{24}$$
 y $\frac{5}{6}$

$$\frac{40}{90}$$
 y $\frac{4}{9}$

$$\frac{20}{24} \, y \, \frac{5}{6} \qquad \qquad \frac{40}{90} \, y \, \frac{4}{9} \qquad \qquad \frac{42}{66} \, y \, \frac{6}{11}$$

3. Completa las siguientes fracciones para que sean equivalentes.

$$\frac{2}{5} = \frac{\square}{15}$$

$$\frac{3}{7} = \frac{6}{\Box}$$

$$\frac{2}{5} = \frac{\square}{15} \qquad \frac{3}{7} = \frac{6}{\square} \qquad \frac{\square}{9} = \frac{10}{45}$$

$$\frac{6}{48} = \frac{\square}{8}$$

$$\frac{8}{\Box} = \frac{2}{6}$$

$$\frac{6}{48} = \frac{\square}{8} \qquad \frac{8}{\square} = \frac{2}{6} \qquad \frac{\square}{80} = \frac{7}{10}$$

Obtención de fracciones equivalentes

Álvaro busca fracciones equivalentes a $\frac{6}{9}$ de dos formas distintas.

Por amplificación

Multiplica el numerador y el denominador de la fracción por un mismo número. La nueva fracción es equivalente a la primera.

$$\frac{6}{9} = \frac{6 \times 2}{9 \times 2} = \frac{12}{18} \triangleright \frac{6}{9} = \frac{12}{18}$$

Las fracciones $\frac{6}{9}$, $\frac{12}{18}$ y $\frac{2}{3}$ son equivalentes.

Por simplificación

Divide el numerador y el denominador de la fracción por un mismo número. La nueva fracción es equivalente a la primera.

$$\frac{6}{9} = \frac{6:3}{9:3} = \frac{2}{3} \triangleright \frac{6}{9} = \frac{2}{3}$$

Para obtener fracciones equivalentes a una fracción dada, se multiplican o dividen los dos términos de la fracción por un mismo número distinto de cero.

1. Escribe dos fracciones equivalentes a cada fracción dada.

Por amplificación $\frac{1}{3}$ $\frac{2}{5}$ $\frac{3}{4}$ $\frac{7}{8}$ $\frac{5}{6}$

Por simplificación $\frac{12}{18}$ $\frac{14}{28}$ $\frac{18}{24}$ $\frac{20}{50}$ $\frac{30}{36}$ $\frac{15}{45}$

2. Simplifica estas fracciones para encontrar la fracción irreducible.

APRENDE

Una fracción es irreducible cuando no puede simplificarse más. Para encontrar la fracción irreducible equivalente a una dada, divide el numerador y el denominador de la fracción entre el máximo común divisor de ambos números.

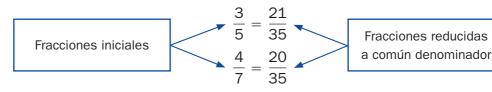
$$\frac{20}{28}$$
 m.c.d. (20 y 28) = 4 \blacktriangleright $\frac{20}{28} = \frac{20:4}{28:4} = \frac{5}{7}$

- 3. RAZONAMIENTO. Piensa y contesta. Después, escribe en cada caso dos ejemplos y comprueba tu respuesta.
 - Si hallas dos fracciones equivalentes a una fracción dada, esas dos fracciones ¿son también equivalentes entre sí?
 - Si dos fracciones son equivalentes, ¿todas las fracciones equivalentes a una de ellas son también equivalentes a la otra?

Reducción a común denominador

Método de los productos cruzados

Pablo reduce las fracciones $\frac{3}{5}$ y $\frac{4}{7}$ a común denominador, es decir, calcula una fracción equivalente a $\frac{3}{5}$ y otra equivalente a $\frac{4}{7}$ de manera que las dos tengan el mismo denominador.


1.º Halla la fracción equivalente a $\frac{3}{5}$.

Multiplica sus dos términos por el denominador de $\frac{4}{7}$, o sea, por 7.

$$\frac{3}{5}=\frac{3\times7}{5\times7}=\frac{21}{35}$$

2.° Halla la fracción equivalente a $\frac{4}{7}$. Multiplica sus dos términos por el denominador de $\frac{3}{5}$, o sea, por 5.

 $\frac{4}{7} = \frac{4 \times 5}{7 \times 5} = \frac{20}{35}$

Para reducir dos fracciones a común denominador por el método de los productos cruzados, multiplica los dos términos de cada fracción por el denominador de la otra fracción.

1. Reduce a común denominador por el método de los productos cruzados.

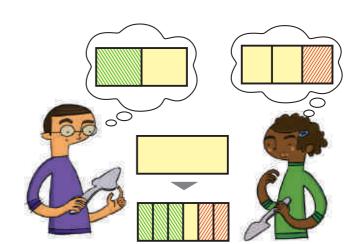
$$\frac{5}{9}$$
 y $\frac{2}{7}$

$$\frac{3}{9}$$
 y $\frac{4}{10}$

$$\frac{7}{6}$$
 y $\frac{2}{5}$

$$\frac{9}{20}$$
 y $\frac{8}{3}$

$$\frac{4}{11}$$
 y $\frac{5}{9}$


$$\frac{5}{8}$$
 y $\frac{2}{7}$ $\frac{3}{9}$ y $\frac{4}{10}$ $\frac{7}{6}$ y $\frac{2}{5}$ $\frac{9}{20}$ y $\frac{8}{3}$ $\frac{4}{11}$ y $\frac{5}{9}$ $\frac{2}{5}$ y $\frac{7}{30}$

2. Observa cómo resuelven el reparto y contesta.

Santiago quiere comer la mitad de un pastel y Alba quiere un tercio del mismo pastel. Para poder repartirlo bien, reducen las fracciones a común denominador:

$$\frac{1}{2}y\frac{1}{3} \triangleright \frac{3}{6}y\frac{2}{6}$$

- ¿En cuántas partes iguales dividen el pastel?
- ¿Cuántas partes coge cada uno?

- 3. Explica cómo resolverías tú los siguientes repartos.
 - Paco guiere dos guintos de una tarta y Sara quiere un cuarto de la misma tarta.
 - Aurora quiere dos tercios de una pizza y Juan quiere un quinto de la misma pizza.

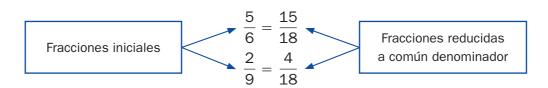
Reducción a común denominador

Método del mínimo común múltiplo

Paula reduce las fracciones $\frac{5}{6}$ y $\frac{2}{9}$ a común denominador por el método del mínimo común múltiplo.

1.º Halla el denominador común.

Calcula el mínimo común múltiplo de los denominadores de las dos fracciones. Este m.c.m. es el denominador común.


$$\frac{5}{6} \text{ y } \frac{2}{9} \blacktriangleright \text{ m.c.m. } (6 \text{ y } 9) = 18$$

$$\frac{5}{6} = \frac{1}{18} \text{ y } \frac{2}{9} = \frac{1}{18}$$

2.º Halla el numerador de cada fracción.

Para cada fracción, divide el denominador común entre el denominador de la fracción inicial y multiplica por el numerador.

$$\frac{5}{6}$$
 > 18:6 × 5 = 15 > $\frac{5}{6}$ = $\frac{15}{18}$ $\frac{2}{9}$ > 18:9 × 2 = 4 > $\frac{2}{9}$ = $\frac{4}{18}$

Para reducir dos o más fracciones a común denominador por el método del mínimo común múltiplo, escribe como denominador común el m.c.m. de los denominadores y como numerador de cada fracción el resultado de dividir el denominador común entre cada denominador y multiplicarlo por el numerador correspondiente.

1. Reduce a común denominador por el método del mínimo común múltiplo.

•
$$\frac{3}{10}$$
 y $\frac{5}{8}$

•
$$\frac{5}{6}$$
 y $\frac{7}{12}$

•
$$\frac{4}{9}$$
 y $\frac{8}{15}$

$$\frac{5}{12}$$
 y $\frac{11}{18}$

•
$$\frac{3}{10}$$
 y $\frac{5}{8}$ • $\frac{5}{6}$ y $\frac{7}{12}$ • $\frac{4}{9}$ y $\frac{8}{15}$ • $\frac{5}{12}$ y $\frac{11}{18}$ • $\frac{9}{14}$ y $\frac{2}{21}$ • $\frac{5}{16}$ y $\frac{7}{24}$

•
$$\frac{5}{16}$$
 y $\frac{7}{24}$

PRESTA ATENCIÓN

Para reducir a común denominador tres o más fracciones por el método del mínimo común múltiplo, sigue los mismos pasos que para reducir a común denominador solo dos.

•
$$\frac{4}{5}$$
, $\frac{7}{12}$ y $\frac{8}{15}$ • m.c.m. (5, 12 y 15) = 60

$$\frac{4}{5} = \frac{7}{60}$$
, $\frac{7}{12} = \frac{8}{60}$ y $\frac{8}{15} = \frac{8}{60}$

•
$$\frac{2}{5}$$
, $\frac{3}{4}$ y $\frac{9}{10}$

•
$$\frac{5}{6}$$
, $\frac{3}{7}$ y $\frac{8}{21}$

•
$$\frac{2}{5}$$
, $\frac{3}{4}$ y $\frac{9}{10}$ • $\frac{5}{6}$, $\frac{3}{7}$ y $\frac{8}{21}$ • $\frac{1}{6}$, $\frac{5}{8}$ y $\frac{7}{12}$

2. RAZONAMIENTO. Reduce a común denominador estas fracciones aplicando en cada caso los dos métodos y contesta.

$$\frac{5}{7}$$
 y $\frac{3}{4}$

$$\frac{5}{6}$$
 y $\frac{2}{5}$

• ¿Has obtenido por los dos métodos el mismo resultado? ¿Por qué?

Comparación de fracciones

Cristina quiere comparar varias parejas de fracciones. Primero mira si tienen igual denominador o numerador. ¿Qué fracción de cada pareja es mayor?

Fracciones con igual denominador

La fracción mayor es la fracción que tiene el numerador mayor.

$$\frac{7}{8}$$
 y $\frac{4}{8}$ \blacktriangleright $\frac{7}{8} > \frac{4}{8}$

Fracciones con igual numerador

La fracción mayor es la fracción que tiene el denominador menor.

$$\frac{5}{9}$$
 y $\frac{5}{6}$ \blacktriangleright $\frac{5}{6} > \frac{5}{9}$

Fracciones con distinto numerador y denominador

Para comparar fracciones con distinto numerador y denominador, reduce primero las fracciones a común denominador y después compáralas.

$$\frac{3}{4} y \frac{6}{10} \quad \blacktriangleright \quad \frac{3}{4} = \frac{15}{20} \quad y \quad \frac{6}{10} = \frac{12}{20}$$

$$\frac{15}{20} > \frac{12}{20} \quad \blacktriangleright \quad \frac{3}{4} > \frac{6}{10}$$

1. Ordena las fracciones.

$$> \bullet \frac{2}{9}, \frac{7}{9} y \frac{5}{9}$$
 $\bullet \frac{3}{8}, \frac{3}{5}, \frac{3}{10} y \frac{3}{7}$

De menor a mayor
$$\frac{3}{4}$$
, $\frac{5}{4}$, $\frac{9}{4}$ y $\frac{7}{4}$

2. Completa las fracciones para que las comparaciones sean ciertas.

$$\bullet \ \frac{4}{7} > \frac{\square}{7}$$

$$\bullet \ \frac{6}{8} < \frac{6}{\square}$$

•
$$\frac{\square}{5} < \frac{9}{5}$$
 • $\frac{6}{8} < \frac{6}{\square}$ • $\frac{3}{10} > \frac{3}{\square}$

•
$$\frac{\Box}{9} < \frac{4}{9} < \frac{\Box}{9}$$

$$\bullet \quad \frac{\square}{4} > \frac{7}{4} > \frac{\square}{4}$$

$$\bullet \ \frac{\square}{9} < \frac{4}{9} < \frac{\square}{9} \qquad \bullet \ \frac{\square}{4} > \frac{7}{4} > \frac{\square}{4} \qquad \bullet \ \frac{2}{\square} > \frac{2}{11} > \frac{2}{\square} \qquad \bullet \ \frac{8}{\square} < \frac{8}{5} < \frac{8}{\square}$$

$$\frac{8}{\square} < \frac{8}{5} < \frac{8}{\square}$$

3. Compara cada pareja de fracciones y escribe el signo correspondiente.

PRESTA ATENCIÓN

Estas fracciones tienen distinto numerador y denominador. Piensa qué debes hacer antes de compararlas.

$$\frac{1}{4} \bigcirc \frac{2}{5}$$

$$\frac{1}{4} \bigcirc \frac{2}{5}$$
 $\frac{2}{7} \bigcirc \frac{3}{8}$ $\frac{5}{6} \bigcirc \frac{7}{9}$

$$\frac{5}{6}$$
 \bigcirc $\frac{7}{9}$

$$\frac{3}{10} \bigcirc \frac{5}{12}$$
 $\frac{8}{15} \bigcirc \frac{9}{20}$ $\frac{5}{8} \bigcirc \frac{14}{24}$

$$\frac{8}{15} \bigcirc \frac{9}{20}$$

$$\frac{5}{8}$$
 \bigcirc $\frac{14}{24}$

4. Ordena las fracciones de mayor a menor.

•
$$\frac{2}{7}$$
 y $\frac{3}{9}$

•
$$\frac{4}{6}$$
 y $\frac{6}{10}$

•
$$\frac{3}{8}$$
, $\frac{4}{8}$ y $\frac{5}{12}$

•
$$\frac{2}{7}$$
 y $\frac{3}{9}$ • $\frac{4}{6}$ y $\frac{6}{10}$ • $\frac{3}{8}$, $\frac{4}{8}$ y $\frac{5}{12}$ • $\frac{2}{5}$, $\frac{4}{15}$ y $\frac{5}{9}$

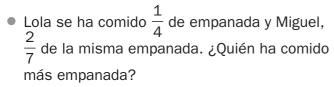
5. Escribe una fracción comprendida entre las dos fracciones dadas.

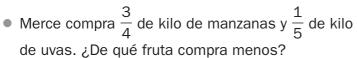
HAZLO ASÍ

$$\frac{3}{7} < \frac{\square}{\square} < \frac{5}{9}$$

1.º Reduce las dos fracciones a común denominador.

$$\frac{3}{7} = \frac{27}{63} \text{ y } \frac{5}{9} = \frac{35}{63} \blacktriangleright \frac{27}{63} < \frac{\square}{\square} < \frac{35}{63}$$


2.º El denominador de la fracción buscada es el denominador común, 63, y el numerador es cualquier número entre 27 y 35, por ejemplo, 32.


$$\frac{27}{63} < \frac{32}{63} < \frac{35}{63} \implies \frac{3}{7} < \frac{32}{63} < \frac{5}{9}$$

$$\bullet \ \frac{1}{7} < \frac{\square}{\square} < \frac{1}{3}$$

$$\bullet \ \frac{5}{8} < \frac{\square}{\square} < \frac{7}{10}$$

- 6. Resuelve.
 - Diego tiene un juego de imanes. Un sexto de las barritas son azules, dos sextos son verdes y tres sextos son rojas. ¿De qué color tiene menos barritas? ¿Y más?

• Luis ha hecho tres refrescos del mismo tamaño. El de naranja contiene $\frac{2}{3}$ de zumo de fruta, el de limón contiene $\frac{3}{5}$ de zumo y la mitad del refresco de fresa es zumo. ¿Qué refresco lleva más cantidad de zumo? ¿Y menos?

CÁLCULO MENTAL

Suma por compensación: resta y suma el mismo número a los dos sumandos para que el primero sea una decena

$$\begin{array}{c|c}
 & -4 \\
\hline
 & 34 + 77 = 30 + 81 \\
\hline
 & +4 \\
\end{array} = 111$$

Actividades

1. ¿Qué fracciones puedes escribir en forma de número mixto? Escríbelas y explica por qué con las otras no es posible.

2. Escribe.

En forma de número mixto

21

39 6

28

37

58

En forma de fracción

 $3\frac{2}{7}$ $2\frac{7}{8}$ $7\frac{4}{6}$

3. Averigua si las fracciones de cada pareja son equivalentes o no.

• $\frac{1}{4}$ y $\frac{5}{20}$ • $\frac{5}{8}$ y $\frac{15}{32}$ • $\frac{24}{9}$ y $\frac{8}{3}$

4. Completa las fracciones para que sean equivalentes y contesta.

 $\frac{2}{7} = \frac{10}{\square} \qquad \frac{3}{8} = \frac{\square}{32} \qquad \frac{4}{9} = \frac{24}{\square}$

 $\frac{4}{10} = \frac{\Box}{5}$ $\frac{15}{27} = \frac{5}{\Box}$ $\frac{15}{35} = \frac{\Box}{7}$

- ¿Por qué número has multiplicado o dividido cada término de la primera fracción para obtener la segunda?
- 5. Escribe dos fracciones equivalentes a cada fracción: una por amplificación y otra por simplificación.

21 14

6. Calcula la fracción irreducible de cada una de estas fracciones.

8

30 18

36 27

- 7. Reduce a común denominador.
 - Por el método de los productos cruzados.

 $\frac{4}{5}$ y $\frac{5}{8}$ $\frac{3}{10}$ y $\frac{7}{9}$ $\frac{15}{7}$ y $\frac{9}{4}$

Por el método del m.c.m.

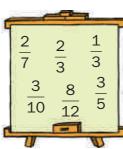
 $\frac{7}{4}$ y $\frac{9}{8}$ $\frac{8}{6}$ y $\frac{10}{9}$ $\frac{4}{15}$ y $\frac{7}{30}$

 $\frac{3}{8}$, $\frac{7}{12}$ y $\frac{5}{6}$ $\frac{4}{5}$, $\frac{9}{10}$ y $\frac{8}{15}$

8. ESTUDIO EFICAZ. Completa el esquema en tu cuaderno.

COMPARACIÓN DE FRACCIONES

Con igual denominador ▶ Es mayor...


Con igual ...

Con distinto ...

9. Ordena de menor a mayor.

 $\frac{9}{4}$, $\frac{9}{6}$ y $\frac{7}{9}$ $\frac{5}{3}$, $\frac{11}{5}$ y $\frac{14}{15}$

10. Escribe las fracciones de la pizarra que cumplen cada condición.

- Mayores que $\frac{2}{5}$.
- Menores que $\frac{3}{7}$.
- Iguales que $\frac{4}{6}$.
- 11. Compara cada pareja de números.

 \triangleright Ejemplo: 2 y $\frac{9}{4}$

 $2 = \frac{8}{4}; \frac{8}{4} < \frac{9}{4} > 2 < \frac{9}{4}$

• 5 y $\frac{10}{3}$ • 6 y $\frac{25}{4}$ • $\frac{17}{6}$ y 3 • $\frac{14}{5}$ y 2

12. Calcula y expresa el resultado en forma de número mixto.

- Óscar reparte en partes iguales 16 mazapanes entre 5 niños. ¿Qué cantidad de mazapanes entrega a cada niño?
- Sole reparte en partes iguales 11 kg de castañas en 4 bolsas. ¿Cuánto pesan las castañas de cada bolsa?

13. Resuelve.

 Edu y Laura tienen una empanada.
 Él quiere comer un sexto de la empanada y ella, tres cuartos.
 ¿En cuántos trozos iguales cortarán la empanada para poder repartirla?
 ¿Cuántos trozos cogerá cada uno?
 ¿Quién cogerá más empanada?

- Alba ha decorado dos quintos de un bizcocho con mermelada y los tres quintos restantes con chocolate. ¿Con qué ha decorado Alba mayor cantidad de bizcocho?
- Ramón ha desayunado un cuarto de litro de leche y en la merienda ha tomado un tercio de litro de leche con cereales.
 ¿Cuándo ha tomado Ramón mayor cantidad de leche?
- Aurora ha comido cinco octavos de tortilla y Javier, tres novenos de la misma tortilla. ¿Quién ha comido más?
- Enrique está haciendo el Camino de Santiago en bicicleta. La primera semana ha recorrido tres séptimos del total y la segunda semana la mitad del trayecto. ¿Qué semana ha recorrido más kilómetros?

ERES CAPAZ DE...

Preparar encargos

Daniel prepara bocadillos y montaditos en su cafetería. Corta cada barra de pan en 3 trozos iguales para hacer los bocadillos y en 5 trozos iguales para hacer los montaditos.

- El lunes pasado preparó dos encargos con las barras y trozos de barra siguientes:
 - Bocadillos de jamón: $5\frac{1}{3}$ barras
 - Montaditos de chorizo: 4 $\frac{1}{5}$ barras
 - ¿Cuántos bocadillos hizo? ¿Cuántos montaditos hizo?
- Hoy tiene que preparar cuatro encargos:
 - 17 bocadillos– 34 montaditos
 - 25 bocadillos46 montaditos
 - ¿Cuántas barras y trozos de barra necesita para cada uno? Exprésalo con un número mixto.
- Con las barras que tenía, ayer preparó
 27 bocadillos. ¿Cuántos montaditos
 podía haber preparado con esas barras?

Solución de problemas

Ensayo y error

Resuelve los problemas haciendo pruebas sucesivas. Fíjate en el resultado de las pruebas anteriores antes de hacer las pruebas siguientes.

Laura está jugando con sus amigos. Ha escrito en un papel tres fracciones menores que la unidad y con denominador 7. Sus numeradores son números consecutivos y su suma es 12. ¿Qué fracciones ha escrito Laura?

Probamos con las fracciones $\frac{1}{7}$, $\frac{2}{7}$ y $\frac{3}{7}$ y calculamos la suma de los numeradores.

$$1+2+3=6$$
 6 < 12 Nos quedamos cortos.

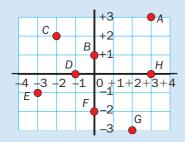
Probamos con fracciones mayores. Por ejemplo, $\frac{4}{7}$, $\frac{5}{7}$ y $\frac{6}{7}$.

$$4 + 5 + 6 = 15$$
 $15 > 12$ Nos hemos pasado.

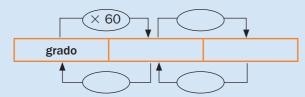
Probamos con
$$\frac{3}{7}$$
, $\frac{4}{7}$ y $\frac{5}{7}$.

$$3 + 4 + 5 = 12$$
 La suma es la correcta.

Solución: Las fracciones son
$$\frac{3}{7}$$
, $\frac{4}{7}$ y $\frac{5}{7}$.



- 1. Mirta compró un libro y 3 ejemplares de un cómic. Pagó 32 € en total. El precio del libro y el de cada cómic era un número exacto de euros menor que 12. El libro era lo más caro. ¿Cuánto costaba cada cómic? ¿Y el libro?
- 2. En la clase de 6.° A hay tres alumnos que cumplen los años tres días consecutivos del mes de junio, antes del día 15. ¿Qué día cumple cada uno si el producto de los tres días es 990?
- **3.** Pedro ha escrito una fracción equivalente a $\frac{3}{5}$. La suma de sus dos términos es 48. ¿Cuál es esa fracción?
- 4. Leire, Ignacio y Fernando son hermanos. Leire es la menor de los tres, Ignacio tiene 4 años más que Leire y Fernando tiene 3 años más que Ignacio. La suma de las edades de los tres es 32 años. ¿Cuántos años tiene cada uno?
- **5. INVENTA.** Escribe un problema que pueda resolverse usando ensayo y error. Puedes hacerlo similar a los problemas de esta página.



EJERCICIOS

- 1. Completa los huecos.
 - $-5 < \square < -3$
 - $-3 < -2 < \square < 0 < \square < +2$
 - \bullet -6 < -2 < \square < +1 < \square < +4
- 2. Escribe las coordenadas cartesianas de cada punto y contesta.

- ¿Qué puntos tienen igual la primera coordenada? ¿Cuáles tienen igual la segunda?
- 3. Calcula los divisores de cada número e indica si es primo o compuesto.
 - 18 26 • 13 • 17 24
- 4. ESTUDIO EFICAZ. Completa el esquema sobre unidades de medida de ángulos.

- **5.** Dados los ángulos $\hat{A} = 50^{\circ}$, $\hat{B} = 120^{\circ}$ y $\hat{C} = 90^{\circ}$, halla gráficamente:

- $\hat{A} + \hat{B}$ $\hat{B} + \hat{C}$ $\hat{C} \hat{A}$ $\hat{B} \hat{C}$
- 6. Calcula.
 - 134° 17' 48" + 27° 51' 39"
 - 175° 19" + 36° 59' 48"
 - 126° 44′ 18" 63° 50′ 49"
 - 90° 35° 40' 45"

PROBLEMAS

- 7. Luis tiene una caja con 12 kg de nueces y otra con 8 kg de avellanas. Prepara bolsas del mismo peso, unas con nueces y otras con avellanas, lo más grandes posible y sin que sobre nada. ¿Cuánto pesará cada bolsa? ¿Cuántas bolsas obtendrá?
- 8. Un sistema antiincendios revisa el aire de un garaje cada 135 segundos. ¿Cuántos minutos y segundos pasan entre revisión y revisión?
- 9. Aurora tenía en su cámara 27 fotos. Hizo 15 fotos a cada uno de sus 6 primos. En casa, al revisar todas, borró un tercio de ellas. ¿Cuántas fotos le quedaron?
- **10.** Un colegio pagó 413 € por una función de títeres a la que asistieron 59 alumnos. Les descontaron 2 € por persona. ¿Cuánto costarían las entradas de 30 personas sin descuento?

- 11. María se conectó a Internet la semana pasada 8 horas y 13 minutos. Pilar se conectó 45 minutos y 17 segundos menos que María. ¿Cuánto tiempo se conectó Pilar?
- **12.** En una tienda tienen dos ofertas: una de 18 platos por 144 € y otra de 12 platos por 108 €. ¿En cuál de las dos ofertas es más barato el precio de un plato? ¿Cuánto más?

Operaciones con fracciones

La pizza es un plato italiano muy conocido. En la pizzería Il mare cortan las pizzas en 8 porciones iguales y sirven las porciones que piden los clientes.

Observa los pedidos y contesta.

Mesa 1 ▶ 7 porciones de pizza de anchoas y 9 de jamón y queso.

- ¿Qué fracción de pizza piden en total?
- ¿Cuántas pizzas completas son?

Mesa 3 ▶ 2 pizzas enteras de jamón y queso.

- ¿Cuántas porciones son?
- ¿Qué fracción de pizza es?

Mesa 2 ► 6 porciones de pizza de atún y 5 de ahumados.

- ¿Qué fracción de pizza piden en total?
- ¿Qué fracción de pizza han pedido de atún más que de ahumados?

Mesa 4 ▶ 1 pizza de atún para repartir entre 4 personas.

- ¿Cuántas porciones cogerá cada persona?
 ¿Qué fracción de pizza es?

Números mixtos

Un número mixto está formado por un número natural y una fracción.

$$\frac{9}{4} = 2 + \frac{1}{4} = 2\frac{1}{4}$$

9 cuartos de tortilla son 2 tortillas enteras y un cuarto de otra.

Cómo se escribe una fracción en forma de número mixto.

$$\frac{9}{4}$$

$$\frac{9}{1} \frac{4}{2} \rightarrow \frac{9}{4} = 2\frac{1}{4}$$

Cómo se escribe un número mixto en forma de fracción.

$$2\frac{1}{4}$$

$$2\frac{1}{4}$$
 $2 \times 4 + 1 = 9 \triangleright 2\frac{1}{4} = \frac{9}{4}$

Reducción a común denominador

Para reducir dos fracciones a común denominador, sigue estos pasos:

- 1.º Halla el denominador común: es el m.c.m. de los denominadores de las fracciones.
- 2.º Halla el numerador de cada fracción: divide el denominador común entre el denominador de la fracción y multiplica por el numerador.

$$\frac{5}{6}$$
 y $\frac{2}{9}$

$$\frac{5}{6} \text{ y } \frac{2}{9}$$
m.c.m. (6 y 9) = 18
$$\frac{5}{6} \triangleright 18 : 6 \times 5 = 15 \triangleright \frac{5}{6} = \frac{15}{18}$$

$$\frac{2}{9} \triangleright 18 : 9 \times 2 = 4 \triangleright \frac{2}{9} = \frac{4}{18}$$

$$\frac{2}{9}$$
 > 18: 9 × 2 = 4 > $\frac{2}{9}$ = $\frac{4}{18}$

1. En cada caso, expresa la parte coloreada en forma de fracción y de número mixto.

VAS A APRENDER

- A sumar y restar fracciones de distinto denominador.
- A multiplicar dos fracciones.
- A dividir dos fracciones.
- A resolver problemas con fracciones.

- 2. Escribe cada fracción en forma de número mixto y cada número mixto en forma de fracción.

- $\frac{21}{4}$ $2\frac{5}{7}$ $5\frac{2}{7}$ $7\frac{4}{9}$ $3\frac{7}{10}$

- 3. Reduce a común denominador.

- $\frac{3}{4}$ y $\frac{2}{5}$ $\frac{5}{6}$ y $\frac{3}{8}$ $\frac{7}{10}$ y $\frac{8}{15}$ $\frac{4}{9}$, $\frac{5}{6}$ y $\frac{7}{12}$

Suma de fracciones

Marco tiene una huerta y un jardín.

Ha plantado $\frac{2}{7}$ de la huerta con tomates,

 $\frac{3}{7}$ con pimientos y $\frac{1}{7}$ con zanahorias.

Después, ha plantado $\frac{1}{4}$ del jardín con flores y $\frac{2}{5}$ con césped.

¿Qué fracción de la huerta ha plantado en total? ¿Y del jardín?

De la huerta

Suma
$$\frac{2}{7}$$
, $\frac{3}{7}$ y $\frac{1}{7}$

Las fracciones tienen igual denominador: suma los numeradores y deja el mismo denominador.

$$\frac{2}{7} + \frac{3}{7} + \frac{1}{7} = \frac{2+3+1}{7} = \frac{6}{7}$$

Ha plantado $\frac{6}{7}$ de la huerta.

Del jardín

Suma
$$\frac{1}{4}$$
 y $\frac{2}{5}$

Las fracciones tienen distinto denominador: redúcelas a común denominador y después suma las fracciones de igual denominador.

$$\frac{1}{4} + \frac{2}{5} = \frac{5}{20} + \frac{8}{20} = \frac{5+8}{20} = \frac{13}{20}$$

Ha plantado $\frac{13}{20}$ del jardín.

- Para sumar varias fracciones de igual denominador, se suman los numeradores y se deja el mismo denominador.
- Para sumar varias fracciones de distinto denominador, se reducen las fracciones a común denominador y después se suman los numeradores y se deja el denominador común.
- 1. Calcula y explica cómo lo haces. Después, representa y comprueba la suma.

$$\frac{2}{8} + \frac{5}{8} \triangleright$$

$$\frac{3}{6} + \frac{5}{6} \blacktriangleright$$

$$\frac{4}{9} + \frac{5}{9} + \frac{7}{9}$$

2. Suma estas fracciones de distinto denominador.

RECUERDA

Antes de sumar, redúcelas a común denominador.

$$\frac{2}{3} + \frac{3}{7}$$
 $\frac{2}{5} + \frac{2}{9}$ $\frac{5}{6} + \frac{3}{5}$ $\frac{1}{2} + \frac{2}{3} + \frac{4}{5}$

$$\frac{3}{4} + \frac{5}{3}$$


$$\frac{5}{6}+\frac{3}{5}$$

$$\frac{-}{2} + \frac{-}{3} + \frac{-}$$

$$\frac{3}{10} + \frac{7}{15}$$

$$\frac{1}{6} + \frac{5}{9}$$
 $\frac{3}{4} + \frac{5}{8}$ $\frac{3}{10} + \frac{7}{15}$ $\frac{1}{2} + \frac{4}{5} + \frac{9}{10}$

3. Calcula estas sumas de un número natural y una fracción.

► Ejemplo:
$$2 + \frac{3}{7} = \frac{2}{1} + \frac{3}{7} = \frac{14}{7} + \frac{3}{7} = \frac{14+3}{7} = \frac{17}{7}$$

•
$$1 + \frac{2}{9}$$
 $3 + \frac{7}{8}$ $4 + \frac{5}{7}$ • $\frac{4}{5} + 2$ $\frac{2}{7} + 5$ $\frac{3}{10} + 6$

4. Expresa las sumas de la actividad 3 en forma de número mixto y de fracción.

Ejemplo:
$$\frac{4}{5} + 2 = 2 + \frac{4}{5} = 2 + \frac{4}{5} = \frac{2 \times 5 + 4}{5} = \frac{14}{5}$$

• ¿Obtienes las mismas fracciones que en la actividad 3?

5. Calcula y resuelve. Después, contesta.

Teresa come la mitad de un helado y Ángel come dos quintos del mismo helado. ¿Qué fracción de helado comen en total?

$$\frac{1}{2} + \frac{2}{5} = \frac{\square}{10} + \frac{\square}{10} = \frac{\square}{\square}$$

En total comen $\frac{\Box}{\Box}$ de helado.

• ¿En cuántas partes iguales dividen el helado para comer cada uno su parte?

¿Cuántas de esas partes come cada uno? ¿Cuántas partes comen en total?

6. Resuelve.

En un puesto, venden porciones de empanada. Cada porción es un noveno de empanada. Tres amigos piden 8, 6 y 5 porciones, respectivamente. ¿Qué fracción de empanada piden en total? ¿Cuántas empanadas enteras y porciones son?

Emilio ha comprado filetes de ternera que pesan cinco sextos de kilo, y filetes de cerdo que pesan tres séptimos de kilo. ¿Qué fracción de kilo pesan en total los filetes? ¿Pesan más o menos de un kilo?

7. Piensa y contesta. Escribe un ejemplo que demuestre cada respuesta.

Ignacio ha sumado dos fracciones menores que la unidad. ¿Puede ser la suma una fracción menor que la unidad? ¿Y mayor? ¿E igual a la unidad?

CÁLCULO MENTAL

Resta por compensación: suma el mismo número a los dos términos para que el segundo sea una decena

$$\begin{array}{c|c}
 & + 2 \\
 \hline
 & 74 - 28 = 76 - 30 = 46 \\
 & + 2
\end{array}$$

Resta de fracciones

Silvia tenía en una jarra $\frac{7}{10}$ de litro de zumo de piña y en otra jarra $\frac{3}{4}$ de litro de zumo de naranja.

Llena de zumo de piña un vaso de $\frac{3}{10}$ de litro, y de naranja una taza de $\frac{1}{5}$ de litro.

¿Qué fracción de litro de zumo queda en cada jarra?

Piña Resta
$$\frac{3}{10}$$
 a $\frac{7}{10}$

Las fracciones tienen igual denominador: resta los numeradores y deja el mismo denominador.

$$\frac{7}{10} - \frac{3}{10} = \frac{7-3}{10} = \frac{4}{10}$$

Quedan $\frac{4}{10}$ de litro de zumo de piña.

Naranja Resta
$$\frac{1}{5}$$
 a $\frac{3}{4}$

Las fracciones tienen distinto denominador: redúcelas a común denominador y después resta las fracciones de igual denominador.

$$\frac{3}{4} - \frac{1}{5} = \frac{15}{20} - \frac{4}{20} = \frac{15 - 4}{20} = \frac{11}{20}$$

Quedan $\frac{11}{20}$ de litro de zumo de naranja.

- Para restar dos fracciones de igual denominador, se restan los numeradores y se deja el mismo denominador.
- Para restar dos fracciones de distinto denominador, se reducen las fracciones a común denominador y después se restan los numeradores y se deja el denominador común.
- 1. Calcula y explica cómo lo haces. Después, representa y comprueba la resta.

$$\frac{5}{8} - \frac{2}{8}$$

$$\frac{8}{9} - \frac{2}{9}$$

$$\frac{10}{6} - \frac{5}{6}$$

2. Resta estas fracciones de distinto denominador.

RECUERDA

Para poder restarlas, redúcelas primero a común denominador.

$$\frac{6}{7} - \frac{2}{5}$$

$$\frac{5}{8} - \frac{3}{8}$$

$$\frac{3}{4} - \frac{2}{3}$$

$$\frac{4}{9} - \frac{5}{12}$$

$$\frac{6}{7} - \frac{2}{5}$$
 $\frac{3}{4} - \frac{2}{3}$ $\frac{7}{10} - \frac{4}{7}$

$$\frac{3}{5} - \frac{1}{10}$$

$$\frac{8}{15} - \frac{9}{20}$$

3. Calcula estas restas de un número natural y una fracción.

► Ejemplo:
$$5 - \frac{3}{8} = \frac{5}{1} - \frac{3}{8} = \frac{40}{8} - \frac{3}{8} = \frac{40 - 3}{8} = \frac{37}{8}$$

•
$$1-\frac{2}{5}$$

$$3-\frac{1}{7}$$

$$4-\frac{3}{4}$$

$$6-\frac{7}{9}$$

•
$$\frac{3}{2}$$
 - 1

$$\frac{9}{4} - 2$$

•
$$1 - \frac{2}{5}$$
 $3 - \frac{1}{7}$ $4 - \frac{3}{4}$ $6 - \frac{7}{9}$ • $\frac{3}{2} - 1$ $\frac{9}{4} - 2$ $\frac{11}{3} - 3$ $\frac{23}{5} - 4$

$$\frac{23}{5}$$
 – 4

4. Calcula.

Ejemplo:
$$\frac{3}{4} + \frac{7}{4} - \frac{5}{4} = \frac{3+7-5}{4} = \frac{5}{4}$$

$$\frac{4}{5} + \frac{3}{5} - \frac{2}{5}$$

•
$$\frac{4}{5} + \frac{3}{5} - \frac{2}{5}$$
 • $\frac{5}{6} - \frac{1}{6} + \frac{7}{6}$ • $\frac{9}{7} - \frac{4}{7} - \frac{2}{7}$

$$\frac{9}{7} - \frac{4}{7} - \frac{2}{7}$$

Resuelve.

- Rogelio ha partido 2 flanes iguales en 8 partes iguales cada flan. Se han comido seis octavos de un flan. ¿Qué fracción de flan ha quedado? ¿Es más o menos de un flan?
- Marta ha comprado un batido de chocolate de tres cuartos de litro y otro de vainilla de un tercio de litro. ¿De qué sabor ha comprado más batido? ¿Qué fracción de litro más?
- Carlos leyó ayer dos novenos de un libro y hoy dos tercios del mismo libro. ¿Qué fracción de libro ha leído hoy más que ayer?

6. Calcula las siguientes operaciones combinadas.

$$\frac{2}{3} + \frac{1}{6} - \frac{3}{4}$$

$$\frac{\square}{6} - \frac{3}{4} = \frac{\square}{\square}$$

$$\frac{5}{6} - \frac{1}{2} + \frac{2}{5}$$

$$\frac{\square}{\square} + \frac{2}{5} = \frac{\square}{\square}$$

$$\frac{7}{9} - \left(\frac{3}{8} + \frac{1}{4}\right)$$

$$\frac{7}{9} - \frac{\square}{\square} = \frac{\square}{\square}$$

$$\frac{2}{3} + \frac{1}{6} - \frac{3}{4}$$

$$\frac{5}{6} - \frac{1}{2} + \frac{2}{5}$$

$$\frac{7}{9} - \left(\frac{3}{8} + \frac{1}{4}\right)$$

$$\frac{4}{5} - \left(\frac{3}{4} - \frac{3}{10}\right)$$

$$\frac{1}{6} - \frac{3}{4} = \frac{1}{10}$$

$$\frac{1}{9} - \frac{1}{9} = \frac{1}{10}$$

$$\frac{7}{9} - \frac{1}{10} = \frac{1}{10}$$

$$\frac{1}{10} - \frac{1}{10} = \frac{1}{10}$$

7. Calcula y escribe las fracciones que faltan para que las igualdades sean ciertas.

$$\frac{1}{4} + \frac{\square}{\square} = \frac{7}{12}$$

$$\frac{\square}{\square} + \frac{3}{5} = \frac{31}{35}$$

$$\frac{4}{9} - \frac{\square}{\square} = \frac{5}{18}$$

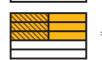
$$\frac{\square}{\square} - \frac{3}{10} = \frac{13}{40}$$

8. RAZONAMIENTO. Piensa y completa las fracciones.

$$1 = \frac{1}{5} + \frac{\square}{5}$$

$$1 = \frac{7}{6} - \frac{\Box}{6}$$

Multiplicación de fracciones


En clase han puesto un corcho que ocupa las $\frac{3}{5}$ partes de una pared y han colocado varios dibujos que ocupan la mitad del corcho. ¿Qué fracción de la pared ocupan los dibujos del corcho?

$$\frac{3}{5}$$
 de la pared

Los dibujos del corcho
$$\frac{1}{2}$$
 de los $\frac{3}{5}$ de la pared \triangleright

$$\triangleleft \frac{3}{10}$$
 de la pared

Calcula $\frac{1}{2}$ de $\frac{3}{5}$, es decir, multiplica $\frac{1}{2}$ por $\frac{3}{5}$

- El numerador es el producto de los numeradores.
- El denominador es el producto de los denominadores.

$$\frac{1}{2} \times \frac{3}{5} = \frac{1 \times 3}{2 \times 5} = \frac{3}{10}$$

Los dibujos del corcho ocupan las $\frac{3}{10}$ partes de la pared.

Para multiplicar varias fracciones, se multiplican los numeradores y se multiplican los denominadores.

1. Calcula y explica cómo lo haces.

$$\frac{2}{5} de \frac{7}{4} = \frac{2}{5} \times \frac{7}{4} = \frac{\square \times \square}{\square \times \square} = \frac{\square}{\square}$$

$$\frac{2}{5} \operatorname{de} \frac{7}{4} = \frac{2}{5} \times \frac{7}{4} = \frac{\square \times \square}{\square \times \square} = \frac{\square}{\square}$$

$$\frac{4}{5} \times \frac{1}{8} \times \frac{2}{3} = \frac{\square \times \square \times \square}{\square \times \square \times \square} = \frac{\square}{\square}$$

$$\frac{4}{9}$$
 de $\frac{3}{10}$

$$\frac{3}{4}$$
 de $\frac{2}{5}$

$$\frac{7}{6} \times \frac{5}{6}$$

$$\times \frac{3}{7}$$
 $\frac{3}{2} \times$

$$\frac{4}{9} \text{ de } \frac{3}{10} \qquad \frac{3}{4} \text{ de } \frac{2}{5} \qquad \frac{7}{6} \times \frac{5}{6} \qquad \frac{1}{3} \times \frac{3}{7} \qquad \qquad \frac{3}{2} \times \frac{5}{6} \times \frac{2}{5} \qquad \frac{3}{4} \times \frac{2}{9} \times \frac{3}{5} \qquad \frac{1}{4} \times \frac{4}{7} \times \frac{2}{3}$$

$$\frac{1}{4} \times \frac{4}{7} \times \frac{2}{3}$$

2. Calcula estas multiplicaciones de números naturales y fracciones.

► Ejemplo:
$$2 \times \frac{3}{7} = \frac{2}{1} \times \frac{3}{7} = \frac{2 \times 3}{1 \times 7} = \frac{6}{7}$$

•
$$3 \times \frac{2}{7}$$

•
$$5 \times \frac{7}{10}$$

$$\bullet$$
 $\frac{2}{9} \times 2$

$$\bullet$$
 $\frac{5}{6} \times 4$

•
$$3 \times \frac{2}{7}$$
 • $5 \times \frac{7}{10}$ • $\frac{2}{9} \times 2$ • $\frac{5}{6} \times 4$ • $\frac{4}{5} \times 2 \times \frac{7}{8}$ • $6 \times \frac{5}{9} \times 4$

3. Calcula la fracción de cada número. Después, multiplica la fracción por el número, calcula el número natural equivalente y comprueba que obtienes el mismo resultado.

$$\frac{2}{3}$$
 de 24

$$\frac{4}{9}$$
 de 45

$$\frac{5}{6}$$
 de 84

$$\frac{2}{3}$$
 de 24 $\frac{4}{9}$ de 45 $\frac{5}{6}$ de 84 $\frac{3}{7}$ de 161 $\frac{5}{8}$ de 232

$$\frac{5}{8}$$
 de 232

4. Resuelve.

- Tres quintos de los pasteles de una bandeja son de chocolate. Cuatro séptimos de los pasteles de chocolate tienen, además, crema. ¿Qué fracción de los pasteles tienen chocolate y crema?
- Una empanada pesa tres cuartos de kilo. Sara ha comprado la mitad. ¿Qué fracción de kilo pesa el trozo que ha comprado?

- Laura ha comprado 3 bolsas de patatas fritas que pesaban tres octavos de kilo cada una. ¿Qué fracción de kilo pesan las 3 bolsas en total? ¿Pesan más o menos de un kilo?
- Antonio ha llenado de agua 4 tarros iguales de siete décimos de litro de capacidad. ¿Qué fracción de litro de agua hay en total en los tarros?
- Dos tercios de los 57 animales que hay en una granja son gallinas. ¿Cuántas gallinas hay en la granja?
- Diego tiene pegadas en un álbum 162 fotos. Cuatro novenos de las fotos son del viaje que hizo en verano. ¿Cuántas fotos del viaje tiene en el álbum?

5. Escribe la fracción inversa de cada fracción dada. Después, multiplica las dos.

APRENDE

- Para hallar la fracción inversa de una dada, cambia entre sí el numerador y el denominador.
- El producto de una fracción por su inversa es siempre 1.

$$\frac{5}{4}$$
 fracción inversa $\frac{4}{5}$

$$\frac{5}{4} \times \frac{4}{5} = \frac{5 \times 4}{4 \times 5} = \frac{20}{20} = 1$$

$$\frac{2}{9}$$
 • $\frac{4}{11}$ •

6. Completa el término que falta en cada fracción para que las igualdades sean ciertas.

$$\frac{\square}{4} \times \frac{3}{\square} = \frac{15}{8}$$

$$\frac{2}{\Box} \times \frac{\Box}{4} = \frac{6}{20}$$

$$\frac{2}{\Box} \times \frac{\Box}{4} = \frac{6}{20} \qquad \qquad \frac{3}{7} \times \frac{\Box}{2} \times \frac{9}{\Box} = \frac{27}{56}$$

CÁLCULO MENTAL

Resta por compensación: resta el mismo número a los dos términos para que el segundo sea una decena

$$67 - 43$$

$$68 - 31$$
 $74 - 52$

División de fracciones

Ester tiene 2 kg y medio de almendras. Las reparte en bolsas de un cuarto de kilo cada una. ¿Cuántas bolsas puede preparar?

$$2\frac{1}{2} \text{ kg} \blacktriangleright \boxed{\qquad} \blacktriangleright \frac{5}{2} \text{ kg}$$

Bolsas de
$$\frac{1}{4}$$
 kg 1 kg $= 4$ bolsas \blacktriangleright

Calcula cuántos $\frac{1}{4}$ hay en $\frac{5}{2}$, es decir, divide $\frac{5}{2}$ entre $\frac{1}{4}$

- El numerador es el producto del numerador de la primera fracción por el denominador de la segunda.
- El denominador es el producto del denominador de la primera fracción por el numerador de la segunda.

$$\frac{5}{2} \times \frac{1}{4} = \frac{5 \times 4}{2 \times 1} = \frac{20}{2} = 10$$

Puede preparar 10 bolsas de un cuarto de kilo.

Para dividir dos fracciones, se multiplican sus términos en cruz.

1. Calcula y explica cómo lo haces.

$$\frac{3}{8} : \frac{4}{7} = \frac{\square \times \square}{\square \times \square} = \frac{\square}{\square}$$

$$\frac{2}{9}:\frac{3}{5}$$

$$\frac{7}{6}:\frac{1}{8}$$

$$\frac{2}{3}:\frac{5}{7}$$

$$\frac{4}{5}$$
: $\frac{3}{10}$

$$\frac{3}{8} : \frac{4}{7} = \frac{\square \times \square}{\square \times \square} = \frac{\square}{\square}$$

$$\frac{2}{9} : \frac{3}{5} \quad \frac{7}{6} : \frac{1}{8} \quad \frac{2}{3} : \frac{5}{7} \quad \frac{4}{5} : \frac{3}{10}$$

$$5 : \frac{3}{8} = \frac{5}{1} : \frac{3}{8} = \frac{\square \times \square}{\square \times \square} = \frac{\square}{\square}$$

$$2 : \frac{4}{7} \quad 3 : \frac{7}{8} \quad \frac{5}{6} : 4 \quad \frac{4}{9} : 5$$

$$2:\frac{4}{7}$$

$$3:\frac{7}{8}$$

$$\frac{5}{6}$$
: 4

$$\frac{4}{9}:5$$

2. Convierte cada división en una multiplicación y calcula.

HAZLO ASÍ

Otra forma de dividir fracciones es multiplicar la primera fracción por la inversa de la segunda.

Si el segundo término es un número natural, se multiplica por la fracción inversa de ese número.

•
$$\frac{3}{7}$$
: $\frac{4}{9}$ $\frac{2}{5}$: $\frac{7}{12}$ $\frac{5}{9}$: $\frac{4}{7}$ $\frac{1}{8}$: $\frac{2}{3}$

$$\frac{2}{5}$$
: $\frac{7}{12}$

$$\frac{5}{9}$$
: $\frac{4}{7}$

$$\frac{1}{8}:\frac{2}{3}$$

•
$$\frac{7}{9}$$
: 6 $\frac{3}{10}$: 5 $\frac{5}{8}$: 4 $\frac{6}{11}$: 3


$$\frac{3}{10}:5$$

$$\frac{5}{8}$$
: 4


$$\frac{6}{11}:3$$

3. Resuelve.

 David tiene una botella con dos quintos de litro de leche. Cada vez que toma un café con leche, se echa en la taza un décimo de litro de leche. ¿Cuántos cafés con leche puede tomarse con la leche de la botella?

- Natalia envasa 6 kg de mandarinas en mallas de tres cuartos de kilo. ¿Cuántas mallas puede hacer?
- Tomás reparte 3 tortillas iguales entre varios amigos. Da a cada uno un quinto de tortilla y no sobra nada. ¿Entre cuántas personas ha repartido las tortillas?
- Maite tiene que enviar 4 paquetes iguales, que pesan en total ocho novenos de kilo. ¿Qué fracción de kilo pesa cada paquete?
- Ricardo ha hecho las tres cuartas partes de un trabajo en 3 días. Si todos los días ha hecho la misma cantidad de trabajo, ¿qué fracción de trabajo ha hecho cada día?

4. Calcula y escribe las fracciones que faltan para que las igualdades sean ciertas.

$$\frac{2}{7} \times \frac{\square}{\square} = \frac{10}{21}$$

$$\frac{2}{7} \times \frac{\square}{\square} = \frac{10}{21} \qquad \qquad \frac{\square}{\square} \times \frac{3}{5} = \frac{27}{10} \qquad \qquad \frac{1}{4} : \frac{\square}{\square} = \frac{3}{28} \qquad \qquad \frac{\square}{\square} : \frac{2}{5} = \frac{45}{40}$$

$$\frac{1}{4}: \frac{\square}{\square} = \frac{3}{28}$$

$$\frac{\square}{\square}:\frac{2}{5}=\frac{45}{40}$$

5. Calcula las siguientes operaciones combinadas.

$$\frac{1}{4} + \frac{1}{2} \times \frac{3}{5}$$

$$\frac{1}{4} + \frac{\square}{\square} = \frac{\square}{\square}$$

$$\frac{8}{9} - \frac{2}{3} : \frac{5}{6}$$

$$\frac{8}{9} - \frac{\square}{\square} = \frac{\square}{\square}$$

$$\frac{1}{4} + \frac{1}{2} \times \frac{3}{5}$$

$$\frac{8}{9} - \frac{2}{3} : \frac{5}{6}$$

$$\frac{1}{4} + \frac{\square}{\square} = \frac{\square}{\square}$$

$$\frac{8}{9} - \frac{\square}{\square} = \frac{\square}{\square}$$

$$\frac{8}{9} - \frac{\square}{\square} = \frac{\square}{\square}$$

$$\frac{\square}{\square} \times \frac{\square}{\square} = \frac{\square}{\square}$$

$$\frac{\square}{\square} : \frac{\square}{\square} = \frac{\square}{\square}$$

$$\frac{9}{5}: \left(\frac{3}{8} + \frac{3}{4}\right)$$

$$\frac{\square}{\square}: \frac{\square}{\square} = \frac{\square}{\square}$$

6. Calcula y completa.

7. RAZONAMIENTO. Piensa y escribe la fracción o el número natural que falta en cada igualdad.

$$1 = \frac{1}{4} \times \square$$

$$1 = 6 \times \frac{\square}{\square}$$

$$1 = \frac{7}{4} \times \frac{\square}{\square}$$

$$1 = \frac{1}{4} : \frac{\square}{\square}$$

$$1 = \frac{7}{4} : \square$$

Actividades

1. ESTUDIO EFICAZ. Copia y completa el esquema.

OPERACIONES CON FRACCIONES

- Suma ▶ Primero se reducen a ...
- Resta ▶ Primero ...
- Multiplicación ➤ Se multiplican ...
 - División ▶ ...
- 2. Suma.

$$\frac{3}{5} + \frac{4}{5}$$

$$\frac{5}{6} + \frac{3}{7}$$

$$\frac{3}{5} + \frac{4}{5}$$
 $\frac{5}{6} + \frac{3}{7}$ $\frac{1}{3} + \frac{2}{4} + \frac{5}{8}$

$$3 + \frac{1}{4}$$

$$3 + \frac{1}{4}$$
 $\frac{2}{9} + 6$

$$5 + \frac{7}{8} + 8$$

3. Resta.

$$\frac{6}{7} - \frac{2}{7}$$

$$\frac{5}{6} - \frac{4}{9}$$

$$\frac{7}{4} - \frac{3}{8}$$

$$2 - \frac{1}{6}$$

$$5-\frac{10}{3}$$

$$2 - \frac{1}{6}$$
 $5 - \frac{10}{3}$ $\frac{14}{5} - 2$

4. Multiplica.

$$\frac{5}{8} \times \frac{1}{8}$$

$$\frac{4}{3} \times \frac{2}{5}$$

$$\frac{5}{8} \times \frac{1}{8}$$
 $\frac{4}{3} \times \frac{2}{5}$ $\frac{3}{5} \times \frac{7}{4} \times \frac{2}{3}$

$$3 \times \frac{10}{6}$$

$$\frac{5}{9} \times 4$$

$$3 \times \frac{10}{6} \qquad \frac{5}{9} \times 4 \qquad \qquad 5 \times \frac{3}{8} \times 2$$

5. Divide.

$$\frac{5}{2}$$
 : $\frac{2}{7}$

$$\frac{3}{5} : \frac{3}{8}$$

$$\frac{4}{9}:\frac{5}{6}$$

$$5:\frac{7}{8}$$
 $3:\frac{2}{5}$

$$3:\frac{2}{5}$$

$$\frac{15}{4}:2$$

6. Escribe el signo de la operación que se ha hecho en cada caso.

$$\frac{3}{4} \bigcirc \frac{2}{5} = \frac{15}{8}$$

$$\frac{3}{4}\bigcirc\frac{2}{5}=\frac{6}{20}$$

$$\frac{3}{4}\bigcirc\frac{2}{5}=\frac{23}{20}$$

$$\frac{3}{4} \bigcirc \frac{2}{5} = \frac{7}{20}$$

7. Completa las fracciones para que las igualdades sean ciertas.

$$\frac{3}{8} + \frac{\square}{8} = \frac{10}{\square}$$

$$\frac{2}{5} + \frac{\square}{\square} = \frac{29}{35}$$

$$\frac{\square}{6} - \frac{2}{6} = \frac{3}{\square}$$

$$\frac{\square}{\square} - \frac{2}{3} = \frac{1}{9}$$

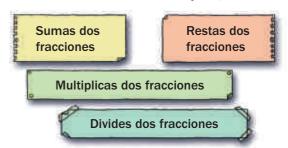
$$\frac{2}{\square} \times \frac{\square}{3} = \frac{10}{21}$$

$$\frac{4}{7} \times \frac{\square}{\square} = \frac{20}{21}$$

$$\frac{\square}{4}:\frac{\square}{6}=\frac{54}{20}$$

$$\frac{\Box}{\Box} : \frac{4}{9} = \frac{45}{32}$$

8. Calcula.


$$\frac{3}{4} + \frac{5}{2} - \frac{3}{5}$$

$$\frac{28}{9} - \frac{5}{6} : \frac{2}{7}$$

$$\frac{5}{9}: \left|\frac{3}{4} - \frac{1}{2}\right|$$

$$\left(\frac{1}{6} + \frac{3}{8}\right) \times \frac{5}{2}$$

Piensa y escribe si el resultado puede ser un número natural. Pon un ejemplo.

10. Observa las tabletas y calcula qué fracción de tableta es.

Fíjate:

Las dos tabletas son del mismo tamaño y están divididas en un número distinto de partes iguales.

- 3 onzas de chocolate negro y 2 de blanco.
- 1 onza de chocolate blanco más que 1 de chocolate negro.
- 3 trozos de 2 onzas de chocolate negro.
- La mitad de un trozo de 3 onzas de chocolate blanco.

11. Resuelve.

- Iván colecciona piezas de ajedrez. Un séptimo de las piezas son de cristal, dos séptimos son de piedra y el resto son de madera. ¿Qué fracción de las piezas es de madera? Si tiene en total 448 piezas, ¿cuántas son de cada material?
- Karina ha bebido un tercio del agua de una cantimplora y Pablo, tres octavos.
 ¿Qué fracción del agua de la cantimplora han bebido en total? ¿Qué fracción del agua queda en la cantimplora?
- Pepe ha comprado 2 bandejas con un cuarto de kilo de bollos con crema y medio kilo de bollos sin crema cada una. ¿Qué fracción de kilo pesa cada bandeja? ¿Y en total las 2 bandejas?

- En un jarrón hay rosas y claveles.
 Tres quintos de las flores son rosas y dos novenos de las rosas son blancas.
 ¿Qué fracción de las flores son claveles?
 ¿Y qué fracción de las flores son rosas blancas?
- Sergio vende tortillas partidas en sextos.
 Hoy tenía 30 sextos de tortilla y ha vendido
 3 tortillas y un sexto. ¿Cuántos sextos de tortilla le quedan? ¿Cuántas tortillas enteras y sextos de tortilla son?
 - ¿Cuántos vasos de un cuarto de litro se pueden llenar con el refresco de una botella de 1 litro y medio?
- En una carretera de 3 km se quiere poner una farola cada tres décimos de kilómetro.
 ¿Cuántas farolas se colocarán, además de la primera del inicio del camino?

ERES CAPAZ DE...

Manuel es cocinero. Antes de empezar a cocinar, prepara los ingredientes necesarios para realizar cada plato.

- Para hacer el salteado de verduras del primer plato, utiliza 1 kg y medio de patatas, 3 cuartos de kilo de calabacines y 1 cuarto de kilo de puerros.
 ¿Cuánto pesan en total las patatas y la verdura?
- Para preparar el segundo plato, ha comprado 9 filetes que pesan un sexto de kilo cada uno.
 ¿Cuánto pesan en total todos los filetes?
- De postre quiere preparar 2 litros y cuarto de zumo de naranja. Al exprimir cada naranja obtiene un octavo de litro. ¿Cuántas naranjas necesita para preparar todo el zumo?
- Si reparte los 2 litros y cuarto de zumo en 9 vasos iguales, ¿qué fracción de litro de zumo echará en cada uno de los vasos?

Utilizar fracciones en la cocina

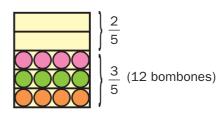
Solución de problemas

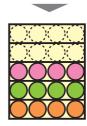
Representar la situación

Representa el enunciado de cada problema. Eso te ayudará a comprenderlo mejor. Después, resuélvelo.

Laura y Félix han abierto una caja de bombones y se han comido los dos quintos de todos los bombones que había en la caja. Todavía quedan en la caja 12 bombones. ¿Cuántos bombones había al principio en la caja?

- Representamos la caja de bombones dividida en 5 partes iguales.
 Señalamos las partes que se han comido y las partes que quedan.
 - 1.° Calculamos los bombones que hay en cada parte.
 En 3 partes hay 12 bombones.


12 : $3 = 4 \triangleright \text{En cada parte hay 4 bombones.}$


2.º Calculamos los bombones que había en la caja.

En 5 partes \triangleright 5 \times 4 = 20

Solución: En la caja había 20 bombones.

- 1. Mariola ha cocinado las tres cuartas partes de los filetes que tenía en la nevera. Ha cocinado en total 15 filetes. ¿Cuántos filetes tenía Mariola en la nevera?
- 2. Los dos tercios de los participantes en un concurso de pintura son mujeres y el resto son hombres. Han participado 14 mujeres. ¿Cuántas personas han participado en el concurso?
- 3. Penélope prestó a su hermano cinco sextos de los ahorros que tenía. Le prestó 55 €. ¿Cuánto dinero tenía Penélope?
- **4.** Miguel compró una impresora a plazos. Ha pagado ya los tres octavos del precio y le quedan aún por pagar 75 €. ¿Cuánto costaba la impresora?
- 5. Paula envió ayer siete octavos de los correos electrónicos que debía mandar durante toda la semana. Le quedaron sin enviar 4 correos. ¿Cuántos correos tenía que mandar en total?
- **6. INVENTA.** Escribe un problema similar a los de esta página que se pueda resolver mejor representando la situación.

EJERCICIOS

1. Calcula.

- 147.906 + 34.127 • 617 × 945
- 898.026 + 40.816 243 × 620
- 9.423:27 345.697 - 281.904
- 512.776 16.999 81.192:398

2. Calcula.

- 7 × 3 − 8 : 2
- \bullet 2 + 3 + 5 × 4
- $9-2\times 3+6$
- $11 (1 + 3) \times 2$
- 6 : (7 − 4) − 1
- 6 × 4 − 8 − 7
- 5 (9 5) + 7 $9 2 \times (9 5)$

3. ESTUDIO EFICAZ. Explica con tus palabras.

- Cómo se sabe si dos fracciones son equivalentes.
- Cómo se hallan fracciones equivalentes a una fracción dada por amplificación.
- Cómo se hallan fracciones equivalentes a una dada por simplificación.
- 4. Expresa en forma de número mixto.

- $\frac{18}{4}$ $\frac{39}{5}$ $\frac{70}{8}$ $\frac{83}{9}$

5. Expresa en forma de fracción.

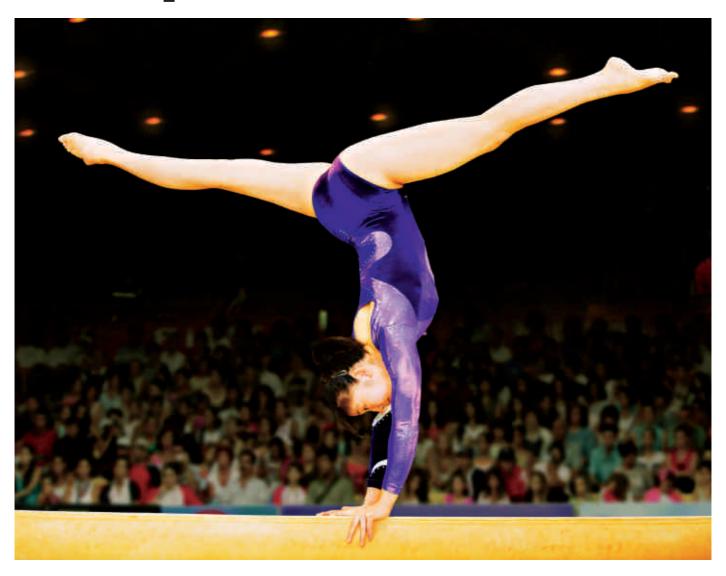
- $8\frac{3}{4}$ $7\frac{4}{5}$ $9\frac{3}{8}$ $6\frac{7}{9}$

6. Completa para que las fracciones sean equivalentes.

- $\frac{7}{4} = \frac{\Box}{12}$ $\frac{18}{15} = \frac{6}{\Box}$ $\frac{5}{\Box} = \frac{40}{64}$

7. Compara cada pareja de fracciones.

- $\frac{5}{6}$ y $\frac{11}{18}$ $\frac{6}{7}$ y $\frac{7}{8}$ $\frac{3}{8}$ y $\frac{4}{12}$


PROBLEMAS

- 8. Un cuarto de los 300 pisos de un bloque son más grandes que el resto. Para arreglar el garaje, los pisos grandes pagaron 115 € cada uno y el resto pagó 93 € cada piso. ¿Cuánto costaba el arreglo del garaje?
- 9. Pilar y Pedro están leyendo la misma novela. Pilar ha leído ya tres octavos y Pedro ha leído dos novenos. ¿Cuál de los dos ha leído más?
- 10. Marta vendió en enero 25 trajes a 120 € cada uno. En febrero vendió 3 trajes menos pero cada uno lo vendió 17 € más caro. ¿Qué mes obtuvo más dinero? ¿Cuánto más?
- 11. En una fábrica de golosinas envasaron 14.400 gominolas en bolsas de 12 gominolas cada una. Las bolsas las pusieron en cajas de 20 bolsas cada una. Cada caja la vendieron por 30 €. ¿Cuánto dinero obtuvieron?
- 12. Luis y Mireia han coincidido hoy haciendo una ruta de senderismo. Luis la recorre cada 8 semanas y Mireia, cada 10 semanas. ¿Dentro de cuántas semanas volverán a coincidir?

13. Marta tiene en su mp3 18 canciones sueltas de pop inglés, 35 de pop español y dos discos de un grupo de rock con el mismo número de canciones cada uno. En total tiene 77 canciones. ¿Cuántas canciones hay en cada disco de rock?

Números decimales. Operaciones

En la gimnasia deportiva se realizan ejercicios en aparatos (barra fija, anillas, potro...) o en el suelo. Cada gimnasta recibe de los jueces una puntuación por cada uno de los ejercicios realizados. Esa puntuación es un número menor o igual que 10, con una cifra decimal. A continuación, se descartan las notas mayor y menor y se hace la media de las restantes. Esta media, que será un número decimal con tres cifras decimales, es la nota del deportista.

En la tabla están las puntuaciones de cinco gimnastas en un ejercicio.

Gimnasta	Puntuación
Nuria	8,973
Rocío	9,156
Arantxa	9,028
Yaiza	8,964
Carmen	9,180

- ¿Qué puntuación consiguió cada gimnasta?
- ¿Cuál es la parte entera de la puntuación de Nuria?
 ¿Y la parte decimal de la puntuación de Rocío?
- ¿Qué gimnasta consiguió la puntuación más alta?
 ¿Y la más baja?

RECUERDA LO QUE SABES

Lectura y descomposición de números decimales

El número 17,425 es un número decimal.

Su parte entera es 17 y su parte decimal es 425.

- Parte decimal Parte entera 2 5 1 7
- 17,425 se lee: 17 unidades y 425 milésimas o 17 coma 425.

•
$$17,425 = 1$$
 decena + 7 unidades + 4 décimas + 2 centésimas + 5 milésimas $17,425 = 10 + 7 + 0,4 + 0,02 + 0,005$

Comparación de números decimales

Fracciones decimales y números decimales

Podemos expresar las fracciones decimales como números decimales y viceversa.

$$\frac{398}{100} = 3,98$$

$$2 \text{ ceros}$$

$$2 \text{ cifras decimales}$$

$$3 \text{ cifras decimales}$$

$$3 \text{ cifras decimales}$$

$$4,7 = \frac{47}{10}$$

$$2 \text{ cifras decimal}$$

$$2 \text{ cifras decimales}$$

$$2 \text{ cifras decimales}$$

$$2 \text{ ceros}$$

1. Escribe cómo se lee y descompón cada número.

4.8 9.52 30.196 147.04 6.083

2. Escribe estos números decimales.

 5 unidades y 3 décimas • 71 coma 09

- 9 unidades y 26 milésimas • 6 coma 148
- 3. Compara y escribe el signo adecuado.

58,37 () 58,4 • 2,69 () 2,652 32,6 () 27,9 14,036 () 14,038

4. Expresa como se indica.

100

10

Como número decimal 287 319 0,4

1.000

Como fracción decimal 0,052 6,81

VAS A APRENDER

A sumar y restar números decimales.

2 ceros

- A multiplicar dos números decimales.
- A aproximar un número decimal a las unidades, décimas o centésimas.
- A estimar sumas o restas de números decimales y productos de un decimal por un natural.

Suma y resta de números decimales

Andrés compró una planta por 17,65 €, un macetero por 21,43 € y una regadera que costaba 8,50 €. Para pagar entregó un billete de 50 €. ¿Cuánto dinero le devolvieron?

1.º Suma los precios de los tres artículos para calcular el gasto total.

Suma 17,65; 21,43 y 8,50

2.º Resta el gasto total al dinero entregado para calcular cuánto le devuelven.

Resta 47,58 a 50

Le devolvieron 2,42 €.

Para sumar o restar números decimales, se colocan de forma que coincidan en la misma columna las cifras del mismo orden. Después, se suman o se restan como si fueran números naturales y se pone la coma en el resultado debajo de la columna de las comas.

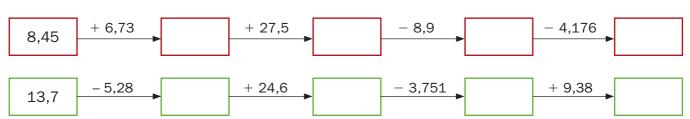
1. Coloca los números y calcula.

RECUERDA

Al restar, cuando sea necesario, añade ceros en el minuendo.

2. Calcula el término que falta en cada operación. Explica cómo lo haces.

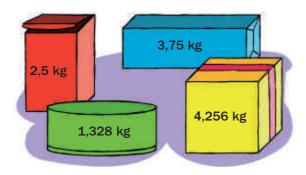
$$38,47 + = 51,95$$


$$-6,284 = 13,79$$

$$193,7 - = 75,64$$

$$5,461 + = 10,27$$

$$-80,42 = 27,5$$


3. Calcula.

4. Calcula. Recuerda el orden en que debes hacer las operaciones.

Ejemplos:
$$26,83 - 4,5 + 7,619$$
 $26,83 - (4,5 + 7,619)$ $26,83 - 12,119 = 14,711$

5. Observa y calcula.

- ¿Cuánto pesan en total los paquetes rojo y verde?
- ¿Cuánto pesan en total los paquetes azul, verde y amarillo?
- ¿Cuánto pesa el paquete azul menos que el amarillo?
- ¿Cuánto pesan los paquetes rojo y azul más que el paquete verde?

6. Resuelve.

- Óscar quiere comprar un chándal y unas deportivas que cuestan 27,90 € y 23,45 €, respectivamente.
 ¿Tiene suficiente dinero con un billete de 50 €?
 ¿Cuánto dinero le falta o le sobra?
- Un corredor de Fórmula 1 tardó en dar una vuelta a un circuito 1 minuto y 22,459 segundos.
 Su compañero de equipo tardó 1,07 segundos más que él. ¿Cuánto tiempo tardó su compañero en dar una vuelta al circuito?
- Ana quiere comprar un retal de tela para hacer un disfraz. Necesita 1,08 m de tela para el pantalón, 0,86 m para el chaleco y 1,5 m para hacer la capa. En la tienda hay retales de 3 m y de 4 m. ¿Cuántos metros de tela necesita? ¿Qué tipo de retal comprará? ¿Qué cantidad de tela le sobrará?

CÁLCULO MENTAL

Multiplica un número natural por 2

$$47 \times 2 \xrightarrow{\begin{array}{c} 40 \times 2 = 80 \\ 7 \times 2 = 14 \end{array}}$$
 > 94

21×2	52×2	28×2	124×2
43 × 2	81 × 2	39 × 2	302 × 2
32 × 2	72 × 2	57 × 2	423 × 2
24×2	64×2	68 × 2	514 × 2

Multiplicación de números decimales

Natalia compra 2 kg de castañas a 3,49 € el kilo y 1,4 kg de nueces a 4,95 € el kilo. ¿Cuánto cuestan las castañas? ¿Y las nueces?

Nueces

Castañas

Multiplica 3,49 por 2

- 1.º Multiplica como si fueran números naturales.
- 2.º En el producto, separa con una coma, a partir de la derecha, tantas cifras decimales como tenga el número decimal.

$$3,49$$
 \triangleright 2 cifras decimales \times 2 \downarrow \bullet 2 cifras decimales

Las castañas cuestan 6,98 €.

Multiplica 4,95 por 1,4

- 1.º Multiplica como si fueran números naturales.
- 2.º En el producto, separa con una coma, a partir de la derecha, tantas cifras decimales como tengan en total los dos factores.

$$4,95$$
 \triangleright 2 cifras decimales \times $1,4$ \triangleright 1 cifra decimal 495 \bullet 3 cifras decimales

Las nueces cuestan 6,93 €.

Para multiplicar números decimales, se multiplican como si fueran números naturales y, en el producto, se separan con una coma, a partir de la derecha, tantas cifras decimales como tengan en total los dos factores.

1. Calcula cuántas cifras decimales tendrá el producto y escribe la coma del resultado.

$$\bullet$$
 95.7 \times 3.6 = 34452

$$\bullet$$
 2.04 \times 362 = 73848

•
$$8,3 \times 4,19 = 34777$$

$$\bullet$$
 5,928 \times 0,7 = 41496

2. Calcula.

$$6,92 \times 34$$

$$5,39 \times 20,7$$

$$82,5 \times 4,035$$

$$208 \times 4,76$$

$$47 \times 1,058$$

$$71,3 \times 8,9$$

$$39,76 \times 9,61$$

$$0,762 \times 3,92$$

3. Multiplica estos números decimales por la unidad seguida de ceros.

RECUERDA

Desplaza la coma a la derecha tantos lugares como ceros siguen a la unidad.

Si es necesario, añade ceros a la derecha.

$$6,42 \times 10 = 64,2$$

$$8,9 \times 100 = 890$$

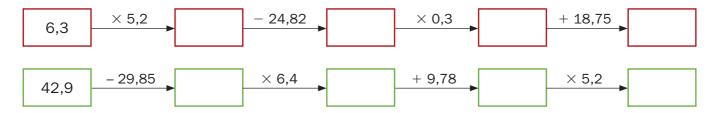
$$4,519 \times 10$$

 $37,2 \times 10$

 $2,834 \times 100$

$$3,92 \times 1.000$$

 $74,5 \times 1.000$


$$73,05 \times 100$$

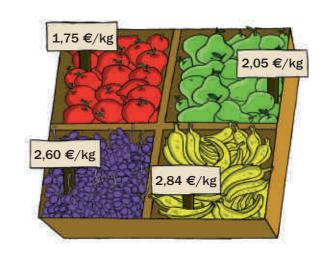
$$0,093 \times 10$$

$$0,9 \times 100$$

$$0,097 \times 1.000$$

4. Calcula.

5. Calcula. Recuerda el orden en que debes hacer las operaciones.


Ejemplo:

$$34,7 + (5,2 - 1,48) \times 6,9$$

 $34,7 + 3,72 \times 6,9$
 $34,7 + 25,668$
 $60,368$

- $3.5 \times 2.7 1.86$
- 19,7 6,3 × 2,75
- $(8,15-5,2) \times 1,86$
 - 37 (8,4 + 15,29)
- $2.8 \times 3.6 4.3 \times 1.79$
- \bullet 10,52 3,2 × 2,3 + 6,5
- \bullet 3,915 + 5 × (4,9 1,678)
- $(27-2,7) \times 3,94-2,5$

6. Observa los precios y calcula.

- Andrés compró 2 kg de plátanos.
 ¿Cuánto le costaron?
- Lourdes compró 1,5 kg de uvas. ¿Cuánto tuvo que pagar?
- Sara compró 1,8 kg de manzanas.
 Pagó con un billete de 5 €.
 ¿Cuánto le devolvieron?
- Luis compró 3,4 kg de peras y 2,15 kg de uvas. ¿Cuánto pagó en total? ¿Cuánto le costaron las peras más que las uvas?

7. Resuelve.

Sergio ha comprado 9 entradas para un concierto, a $23.45 \in \text{cada una}$.

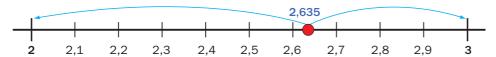
¿Cuánto le cuestan las entradas si le hacen una rebaja de 18,30 € en el precio total?

¿Cuánto le cuestan si la rebaja es de 1,90 € en cada entrada?

8. RAZONAMIENTO. Observa cada producto resuelto y escribe, sin hacer la operación, el resultado de las demás multiplicaciones.

$$2,7 \times 3,46 = 9,342$$

$$27 \times 3,46 \qquad 2,7 \times 346$$


$$0,27 \times 3,46 \qquad 0,027 \times 34,6$$

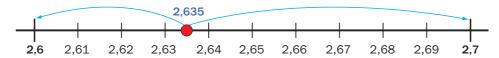
$$5,29 \times 8 = 42,32$$

 $5,29 \times 80$ $5,29 \times 800$
 $5,29 \times 0,8$ $5,29 \times 0,08$

Aproximación de números decimales

Observa cómo se aproxima el número 2,635 a las unidades, a las décimas y a las centésimas.

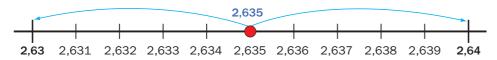
Aproximación a las unidades



Para aproximar a las unidades, mira la cifra de las décimas.

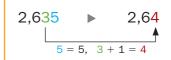
- Si es mayor o igual que 5, aumenta en 1 la cifra de las unidades.
- Si es menor que 5, deja igual la cifra de las unidades.

Aproximación a las décimas



Para aproximar a las décimas, mira la cifra de las centésimas.

- Si es mayor o igual que 5, aumenta en 1 la cifra de las décimas.
- Si es menor que 5, deja igual la cifra de las décimas.



Aproximación a las centésimas

Para aproximar a las centésimas, mira la cifra de las milésimas.

- Si es mayor o igual que 5, aumenta en 1 la cifra de las centésimas.
- Si es menor que 5, deja igual la cifra de las centésimas.

1. Aproxima como se indica.

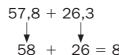
2. Piensa y escribe qué valores puede tener la cifra tapada en cada número.

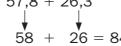
Este número, aproximado a las unidades, es 4.

Este número, aproximado a las décimas, es 5,9.

puede ser ..., ..., ... o ...

puede ser ..., ..., ... o ...


Estimaciones


Paula quiere hacer un avión de aeromodelismo. Necesita un listón de 57,8 cm y otro de 26,3 cm, y un cordón de 2,93 m.

Estima la suma 57,8 + 26,3

- 1.° Aproxima los datos 57,8 cm y 26,3 cm a las unidades, ya que hay que obtener el resultado en centímetros.
- 2.º Suma las aproximaciones.

Necesita unos 84 centímetros de listón.

Si compra el cordón a 6 € el metro, ¿cuánto le cuesta aproximadamente?

Estima el producto 2,93 \times 6

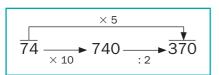
- 1.º Aproxima el dato 2,93 m a las unidades, ya que el precio está en euros por metro.
- 2.º Multiplica las aproximaciones.

$$\begin{array}{c}
2,93 \times 6 \\
\downarrow \\
3 \times 6 = 18
\end{array}$$

El cordón le cuesta unos 18 €.

Para estimar sumas, restas o productos de números decimales, se aproximan los números a la unidad más conveniente y después se suman, restan o multiplican las aproximaciones.

1. Estima las operaciones, aproximando a la unidad indicada.


A las unidades	17,29 + 5,9	28,6 - 19,723	8,31 × 5
A las décimas	24,175 + 3,68	15,84 - 6,351	15,47 × 3
A las centésimas	9,635 + 8,726	20,483 - 4,027	6,279 × 20

2. Resuelve.

En una pastelería las tartas grandes cuestan 18,70 € y las pequeñas, 13,85 €. ¿Cuántos euros cuesta, aproximadamente, una tarta grande más que una pequeña?

CÁLCULO MENTAL

Multiplica un número natural por 5: multiplica por 10 y divide entre 2

24×5	61 × 5	34×5	262 × 5
86 × 5	83 × 5	52 × 5	486 × 5
44 × 5	45×5	76×5	628 × 5

Actividades

1. Suma.

- \bullet 658,2 + 94,73
- 24,83 + 17,546
- \bullet 7.19 + 34.8 + 65
- 58,46 + 82,953 + 0,7

2. Resta.

- 83,692 − 7,94
 53,2 − 9,371
- 164, 6 48,03
- 327 8,56

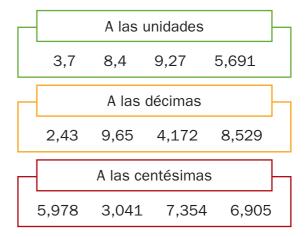
3. Multiplica.

- 2.805 × 67
- 4,82 × 29,3
- 3,216 × 100
- 19.4 × 35.8
- 5.3 × 1.000
- 61,2 × 5,704

4. Escribe con cifras y calcula.

- Veinticuatro unidades y ochenta y tres centésimas más doce unidades y noventa y siete milésimas.
- Ciento cinco coma seis menos cuarenta y ocho coma doscientos setenta y uno.
- Nueve unidades y quinientas sesenta y cuatro milésimas por cincuenta y ocho.
- Cuarenta coma veintisiete por diecisiete coma treinta y nueve.

5. Calcula el término que falta.


- \bullet + 6,294 = 84,713
- 23,485 + = 30,76
- -9.82 = 61.304
- \bullet 76,54 = 3,297

6. Calcula. Después compara los resultados y escribe el signo correspondiente.

- 5,297 + 18,43 () 25,36 1,498
- $6.79 \times 3.2 \bigcirc 14.346 + 7.382$
- 82,4 17,591 () 1,36 × 47
- $3.175 \times 6.4 \bigcirc 27.5 6.89$

- 7. ESTUDIO EFICAZ. Pon un ejemplo de cada una de las operaciones con decimales que has aprendido y explica a un compañero cómo las calculas.
- 8. Piensa y escribe la coma que falta en cada número para que el resultado sea el indicado.
 - \bullet 7169 + 3528 = 75,218
 - \bullet 527 1983 = 32,87
 - \bullet 681 \times 39 = 265.59
 - \bullet 972 \times 058 = 56.376
- 9. Calcula. Recuerda el orden en que debes hacer las operaciones.
 - \bullet 7.43 + 5.8 9.152
 - $65,2-4,953\times 10$
 - \bullet 3,5 \times (6,43 + 2,816)
 - \bullet (24,7 16,39) \times 10,8
 - \bullet 5,63 + 0,084 \times 100 9,2
 - \bullet 8,5 \times 4,96 (32,87 + 1,054)

10. Aproxima cada número decimal como se indica.

- 11. Completa con dos números decimales cuya aproximación sea el número dado.

 - ... < 8 < < 15 < ...

 - ... < 5,4 < < 20,6 < ...

 - ... < 6,37 < < 9,82 < ...

12. Observa y contesta, haciendo un cálculo aproximado.

 ¿Cuántos metros miden, aproximadamente, las dos cuerdas?

 ¿Cuántos litros caben, aproximadamente, en el bidón más que en la cazuela?

¿Cuántos kilos pesan, aproximadamente,4 sandías como esta?

13. Resuelve.

- Paco recibió en su bar 53 botellas de 1,5 l de refresco con gas y 38 botellas de 0,75 l de refresco sin gas. ¿Cuántos litros de refresco recibió en total?
- Maite tiene un rollo de cuerda de 5 m.
 Corta 3 trozos de 0,76 m cada uno y otro trozo de 1,4 m. ¿Cuántos metros de cuerda quedan en el rollo?
- Ayer, Inés dio 3 vueltas a un circuito de 2,385 km y hoy ha dado 2 vueltas a otro de 4,6 km. ¿Cuántos kilómetros ha recorrido hoy más que ayer?
- Miguel ha comprado 2,5 kg de carne a 7,28 €/kg y 3 barras de pan a 0,52 € cada una. Para pagar, entrega 20 €. ¿Cuánto dinero le devuelven?

ERES CAPAZ DE...

Z DE... Hacer cálculos con carburantes

En una gasolinera tienen hoy estos precios:

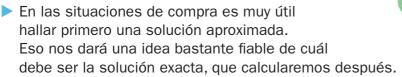
PRECIOS

Gasolina:

- Súper ▶ 1,011 €/ℓ
- Extra súper > 1,065 €/l

Gasóleo A:

- Diésel > 0,956 €/l
- Extra diésel > 1,071 €/ℓ
- Ramón ha llenado el depósito de su coche, en el que caben 50 ℓ. Ha echado 38,45 ℓ. ¿Cuántos litros de gasolina había en el depósito?
- Paloma echa 27,48 l de gasolina extra súper.
 La pantalla del surtidor aproxima el importe a céntimos de euro (centésimas).
 ¿Cuánto pagará Paloma?
- Julián tiene un coche diésel y tiene que echarle gasóleo A.
 ¿Qué diferencia de precio por litro existe entre los dos tipos de gasóleo?
 Si Julián echa 30 litros del gasóleo más caro, ¿cuánto pagará más que si echa del barato?



Solución de problemas

Anticipar una solución aproximada

Halla una solución aproximada para cada problema. Después, resuélvelo y comprueba que la solución exacta se corresponde con la solución aproximada.

Marcos ha comprado en la frutería: 4 kg de naranjas a 2,75 € el kilo, 3 kg de manzanas a 1,39 € el kilo y 2 kg de plátanos a 1,78 € el kilo. ¿Cuánto ha pagado Marcos por su compra?

Solución aproximada

- 1.º Aproxima los precios a las unidades.

 Naranjas: 2,75 ▶ 3 Manzanas: 1,39 ▶ 1 Plátanos: 1,78 ▶ 2
- 2.º Halla el precio aproximado.

$$4 \times 3 + 3 \times 1 + 2 \times 2 = 19$$

Ha pagado aproximadamente 19 €.

Solución exacta

$$4 \times 2,75 + 3 \times 1,39 + 2 \times 1,78 = 18,73$$

Ha pagado 18,73 €.

Las dos soluciones tienen valores muy similares.

- **1.** Mónica ha comprado un traje por 87,35 €, unos zapatos por 39,15 € y un sombrero por 51,78 €. ¿Cuánto ha pagado Mónica?
- 2. Pedro tenía 29,32 € y compró un libro por 13,85 € y un disco por 12,19 €. ¿Cuánto dinero le quedó?
- 3. Al comprar una cámara de fotos, Juan pagó 175,60 € en el primer plazo y 3 plazos más de 42,75 € cada uno. ¿Cuánto pagó Juan por la cámara?
- 4. Cinthia ha comprado 9 cajas de tornillos a 6,78 € cada una, 2 cajas de tuercas a 1,93 € cada una y un destornillador eléctrico que costaba 22,19 €.
 ¿Cuánto le ha costado su compra?
- **5. INVENTA.** Escribe un problema similar a los de esta página y pide a tu compañero que calcule primero una solución aproximada.

EJERCICIOS

- 1. Escribe cuatro múltiplos de cada número.
- 10
- 13
- 2. Halla todos los divisores de cada uno de estos números.
 - 9
- 12
- 40
- 3. Averigua cuáles de estos números

15 18 20

21

30

son divisibles por:

- 2
- 3
- 5

- 4. Calcula.
 - m.c.d. (12, 24)
- m.c.m. (3, 15)
- m.c.d. (16, 40)
- m.c.m. (4, 7)
- **5. ESTUDIO EFICAZ.** Algunas de estas comparaciones están mal hechas. Escríbelas bien en tu cuaderno.

$$\frac{2}{5} > \frac{2}{7}$$

$$\frac{2}{3} > \frac{3}{4}$$

$$\frac{9}{5}<\frac{11}{5}$$

$$\frac{3}{4} < \frac{3}{5}$$

$$\frac{9}{5} < \frac{11}{5}$$
 $\frac{3}{4} < \frac{3}{5}$ $\frac{7}{12} < \frac{11}{24}$

$$\frac{7}{8} > \frac{9}{8}$$

$$\frac{6}{9} > \frac{6}{10}$$

$$\frac{4}{18}>\frac{2}{12}$$

- **6.** Escribe dos fracciones equivalentes a cada una de las siguientes, una por amplificación y otra por simplificación.
- $\frac{18}{15}$ $\frac{12}{10}$

7. Calcula.

$$\frac{9}{11} + \frac{4}{11}$$

$$\frac{3}{8} + \frac{5}{12}$$

$$\frac{9}{11} + \frac{4}{11}$$
 $\frac{3}{8} + \frac{5}{12}$ $\frac{1}{4} + \frac{5}{8} + \frac{9}{10}$

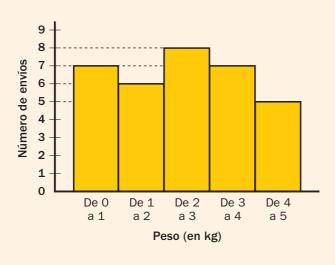
$$\frac{7}{8} - \frac{5}{8}$$

$$\frac{11}{3} - \frac{13}{6}$$

$$\frac{7}{2} - \frac{7}{3} + \frac{7}{4}$$

PROBLEMAS

- 8. Manuela mezcló tres cuartos de kilo de chocolate negro y dos quintos de kilo de chocolate blanco para recubrir una tarta. Utilizó solamente ocho décimos de kilo. ¿Qué fracción de kilo le sobró?
- 9. Magdalena y Carlos tienen que mandar por correo dos lotes iguales de regalos. Magdalena ha enviado ya cuatro séptimos de los regalos y Carlos tres octavos. ¿Quién ha enviado menos? Si cada lote tiene 56 regalos, ¿cuántos ha enviado ya cada uno?
- **10.** En una empresa repartieron 4.000 paquetes de cereales en 80 lotes iguales. Los 25 primeros lotes los enviaron a un supermercado que vendió cada paquete de cereales a 2 €. ¿Cuánto obtuvo el supermercado por la venta de los cereales?
- **11.** En un crucero viajaron 175 personas y se recaudaron 59.500 €. El mes siguiente subieron el precio por persona 50 € y viajaron 30 personas más. ¿Cuánto recaudaron en el segundo crucero más que en el primero?

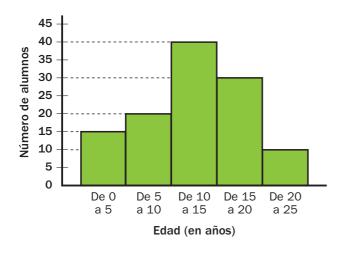

12. Juan hizo ayer dos tercios de las 90 llamadas telefónicas de su empresa. Tres quintos de sus llamadas fueron internacionales y de ellas en un cuarto no obtuvo respuesta. ¿Cuántas llamadas internacionales hizo Juan? ¿En cuántas llamadas internacionales obtuvo Juan respuesta?

Tratamiento de la información

Histogramas

En una oficina de Correos han clasificado los envíos en varios grupos según su peso.

En el histograma se han representado los envíos que hay en cada clase.

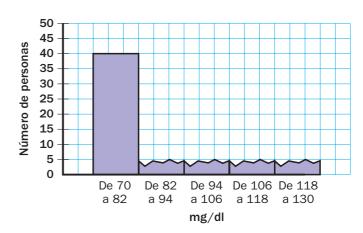


- ¿Cuántos envíos pesan de 3 a 4 kg? Hay 7 envíos que pesan de 3 a 4 kg.
- Un envío pesa 1 kg. ¿En qué grupo estará? Estará en el grupo de 1 a 2 kg.

En un histograma usamos rectángulos unidos para representar datos agrupados.

- 1. Observa el histograma de arriba y contesta.
 - ¿Cuánto pueden pesar los envíos del grupo más numeroso?
 - ¿Se puede saber cuántos envíos de 3,5 kg hay? ¿Por qué?
- 2. En el histograma están representados los alumnos de una academia de natación agrupados por edades. Obsérvalo y contesta.

- Juan tiene 4 años, Ana tiene 6 años y Pedro tiene 10 años. ¿En qué grupo de edad está cada uno?
- Paula tiene 12 años. ¿Cuántos alumnos tiene en total el grupo de edad al que ella pertenece?
- ¿Qué edades pueden tener los alumnos del grupo menos numeroso?
- ¿Cuántos alumnos de la academia tienen 15 o más años?


3. Lee la información. Luego copia y completa la tabla y el gráfico.

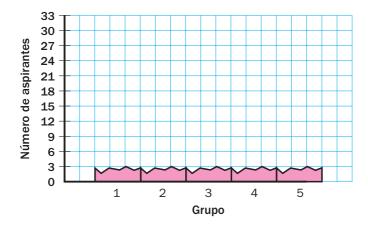
En un ambulatorio agruparon los análisis de azúcar en sangre de varias personas para un estudio. Miden los miligramos de azúcar que hay en 1 decilitro.

Cuarenta personas tenían de 70 a 82 mg/dl, treinta y cinco personas tenían de 82 a 94 mg/dl, veinticinco tenían de 94 a 106 mg/dl, quince de 106 a 118 mg/dl y diez personas de 118 a 130 mg/dl.

mg/dl de azúcar	N.º de personas
De 70 a 82	
De 82 a 94	
De 94 a 106	
De 106 a 118	
De 118 a 130	

4. Copia y completa el gráfico con los datos del texto. Después, contesta.

En unas pruebas físicas para bombero han clasificado a los aspirantes según su altura en metros.


GRUPO 1. De 1,60 m a 1,67 m ▶ 6 aspirantes

GRUPO 2. De 1,67 m a 1,74 m ▶ 27 aspirantes

GRUPO 3. De 1,74 m a 1,81 m \triangleright 30 aspirantes

GRUPO 4. De 1,81 m a 1,88 m ▶ 21 aspirantes

GRUPO 5. De 1,88 m a 1,95 m ▶ 18 aspirantes

- Marta mide 1,69 m y Luis mide 1,74 m. ¿En qué grupo está cada uno de ellos?
- ¿Cuál es el grupo más numeroso?
 ¿Qué estaturas pueden tener?
- Miguel mide 1,90 m. ¿Cuántos aspirantes hay en total en su grupo?
- ¿Cuántos aspirantes miden 1,74 m de altura o más?

División de números decimales

La velocidad a la que navegan los barcos se expresa en nudos. Un nudo equivale a una milla náutica por hora, es decir, a 1,852 kilómetros por hora.

Cada barco tiene una velocidad máxima que está determinada, entre otros factores, por su eslora o longitud: cuanto más largo sea un barco, más puede correr. Una vez alcanzada esa velocidad máxima, si añadimos más potencia, esta originará olas más grandes –creadas por el barco–, pero no más velocidad.

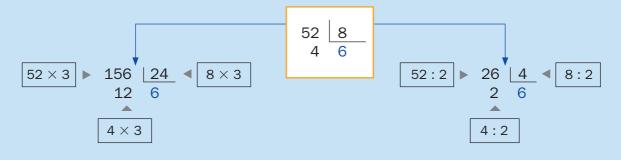
Por ejemplo, un velero de 12 metros de longitud puede alcanzar una velocidad de 8,4 nudos y un yate a motor de 22 metros puede llegar a 30 nudos.

- ¿Cuántos metros recorrerá un barco en una hora a una velocidad de 10 nudos?
- ¿A cuántos kilómetros por hora irá el velero del ejemplo si va a su velocidad máxima?
 ¿Y el yate?

120

RECUERDA LO QUE SABES

Multiplicación de un número decimal por la unidad seguida de ceros


Para multiplicar un número decimal por la unidad seguida de ceros, se desplaza la coma a la derecha tantos lugares como ceros siguen a la unidad. Si es necesario, se añaden ceros a la derecha.

$$7,491 \times 10 = 74,91$$

 $3,58 \times 100 = 358$

$$2,6 \times 1.000 = 2.600$$

Cambios en los términos de una división

Al multiplicar o dividir el dividendo y el divisor de una división entera por un mismo número, el cociente no varía, pero el resto queda multiplicado o dividido por dicho número.

1. Calcula.

$4,519 \times 10$	$81,56 \times 100$	3,92 × 1.000
37,2 × 10	$0,093 \times 100$	1,683 × 1.000
2,83 × 10	73,05 × 100	$74,5 \times 1.000$
$56,1 \times 10$	$0,9 \times 100$	$0,097 \times 1.000$

2. Observa la división resuelta y completa la tabla.

Dividendo	Divisor	Cociente	Resto
546 × 4	24 × 4		
546 × 10	24 × 10		
546 : 2	24 : 2		
546 : 6	24 : 6		

3. Suprime ceros y calcula.

• 4.640 : 20

8.400:400

22.500:90

VAS A APRENDER

- A dividir un número decimal entre un natural.
- A dividir un número natural entre un decimal.
- A dividir un número decimal entre un decimal.
- A calcular cocientes con un número dado de cifras decimales.
- A resolver problemas con números decimales.

División de un decimal entre un natural

Lola ha hecho un queso con leche de vaca que pesa 2,856 kg y otro con leche de oveja que pesa 1,394 kg. Después, ha cortado cada queso en dos trozos iguales. ¿Cuánto pesa la mitad de cada queso?

Queso de vaca

Divide 2,856 entre 2

Divide como si fueran números naturales y, al bajar la primera cifra decimal del dividendo, escribe la coma en el cociente.

La mitad del queso de vaca pesa 1,428 kg.

Queso de oveja

Divide 1,394 entre 2

Como la parte entera del dividendo es menor que el divisor (1 < 2), escribe 0 y coma en el cociente y sigue dividiendo 13 entre 2.

La mitad del queso de oveja pesa 0,697 kg.

Para dividir un número decimal entre un número natural, se hace la división como si fueran números naturales y, al bajar la primera cifra decimal del dividendo, se pone la coma en el cociente.

1. Calcula.

• 72.56:8

• 9,215:5

• 635,4:9

• 5,496:6

2,135:7

• 0,696:8

• 30,75:25

296,1:63

• 8,428:49

2. Calcula el factor que falta en cada multiplicación. Explica cómo lo haces.

$$6 \times \blacksquare = 50,58$$

$$\times$$
 9 = 976,5

$$32 \times \square = 104,96$$

$$\times$$
 85 = 82,195

3. Divide estos números decimales entre la unidad seguida de ceros.

RECUERDA

Desplaza la coma a la izquierda tantos lugares como ceros siguen a la unidad.

Si es necesario, añade ceros a la izquierda.

 128,4:10
 40,8:100
 425,2:1.000

 9,3:10
 329,5:100
 81,4:1.000

 5,79:10
 7,16:100
 30,7:1.000

 0,36:10
 24,37:100
 6,9:1.000

División de un natural entre un decimal

En una fábrica se están embotellando 3.546 ℓ de zumo de un depósito en botellas de 1,5 ℓ de capacidad. ¿Cuántas botellas se llenarán?

mo de la companya de

Divide 3.546 entre 1.5

1.º Convierte el divisor en un número natural. Para ello, multiplica el dividendo y el divisor por la unidad seguida de tantos ceros como cifras decimales tenga el divisor.

2.º Haz la división de números naturales que has obtenido.

Se llenarán 2.364 botellas.

Para dividir un número natural entre un número decimal, se multiplican ambos por la unidad seguida de tantos ceros como cifras decimales tenga el divisor, y después se hace la división de números naturales obtenida.

1. En cada caso, escribe qué división de números naturales debes calcular y cómo la has hallado.

85 : 0,34 ... : ...

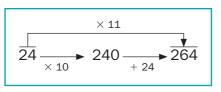
Como el divisor tiene ... cifras decimales, he multiplicado el dividendo y el divisor por ...

30:1,2

59:0,125

288:2,25

1.273:0,5


2. Calcula.

- **21**:3,5
- 493 : 3,4
- 592:9,25
- 61:0,008

- 44:2,75
- 91:0,104
- 2.015:0,62
- 42:0,025

CÁLCULO MENTAL

Multiplica un número natural por 11: multiplica por 10 y luego suma el número

16×11	40 × 11	200×11
18 × 11	42 × 11	300 × 11
30 × 11	53 × 11	610 × 11
36×11	54 × 11	720 × 11

División de un decimal entre un decimal

Sara compra un lomo que pesa 2,4 kg por 44,88 €. ¿Cuánto cuesta el kilogramo de lomo?

Divide 44,88 entre 2,4

1.º Convierte el divisor en un número natural. Para ello, multiplica el dividendo y el divisor por la unidad seguida de tantos ceros como cifras decimales tenga el divisor.

2.º Haz la división que has obtenido.

El kilogramo de lomo cuesta 18,70 €.

Para dividir un número decimal entre un número decimal, se multiplican ambos por la unidad seguida de tantos ceros como cifras decimales tenga el divisor, y después se hace la división obtenida.

1. En cada caso, escribe qué división debes calcular y contesta.

PRESTA ATENCIÓN

El dividendo de la división obtenida puede ser un número natural o decimal. El divisor siempre es un número natural.

- ¿Por qué número has multiplicado el dividendo y el divisor? ¿Por qué? ¿El dividendo obtenido es un número natural o decimal?
- 2. Escribe la división del recuadro que tiene igual cociente que cada división dada. Después, calcula dicho cociente.

3.64:7

3.640:7

36.400:7

36,4:7

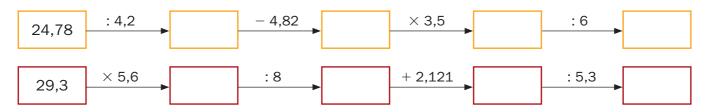
3. Calcula.

54.6:0.65

4,608:0,072

7,918: 2,14

3,074:5,8


2,87:0,035

524,4:76

31:0.62

68,37:129

4. Calcula.

- 5. Calcula. Recuerda el orden en que debes hacer las operaciones.
 - 63,8 + 9,516 : 7,8
 - 42,18:5,7 3,629
 - 2,08 × 3,6 : 1,2

- \bullet 60,188 : (5,9 + 1,44) \times 3,07
- \bullet 9,657 + 7,614 : (3,1 2,92)
- \bullet (0,82 + 0,76) : (13,2 12,805)

6. Resuelve.

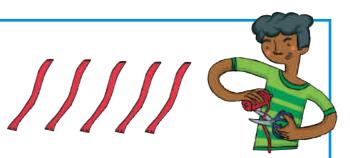
- En una tahona han hecho hoy 54,5 kg de pastas, para empaquetarlas en cajas de 0,25 kg cada una.
 ¿Cuántas cajas llenarán?
- Diego tiene en su hucha 36 € en monedas de 0,20 €.
 ¿Cuántas monedas tiene?
- 7. Halla el cociente y el resto de las siguientes divisiones enteras.

HAZLO ASÍ

Halla el cociente y el resto de la división 67,9 : 2,3.

- 1.º Multiplica por 10 el dividendo y el divisor, y calcula la división obtenida.
- 2.º Halla los términos de la división original a partir de los términos de la división calculada:
 - El cociente es el mismo.
 - El resto ha quedado multiplicado por 10 ▶ Divídelo entre 10.

- **37,4:5,8**
- 981.5 : 0.64
- 46:0,37
- 8,231:0,009
- 64,57:0,095
- 8. RAZONAMIENTO. Calcula cada división. Después, piensa por qué número has multiplicado el dividendo y completa.


$$7:0,1 = ...:1 = ...$$
 \blacktriangleright $7:0,1 = 7 \times ...$ $8,2:0,1 = ...:1 = ...$ \blacktriangleright $8,2:0,1 = 8,2 \times ...$ $3,95:0,1 = ...:1 = ...$ \blacktriangleright $3,95:0,1 = 3,95 \times ...$

Dividir un número entre 0,1 es igual que multiplicarlo por ...

- Piensa y completa. Después, pon dos ejemplos y comprueba.
 - ${\hspace{0.3mm}\text{--}\hspace{0.1mm}}$ Dividir un número entre 0,01 es igual que multiplicarlo por ...
 - Dividir un número entre 0,001 es igual que multiplicarlo por \dots

Obtención de cifras decimales en el cociente

Alberto tiene una cinta de 9 metros y quiere cortarla en 7 trozos iguales. ¿Cuántos metros medirá cada trozo?

Divide 9 entre 7

Cada trozo medirá 1 m y le sobrarán 2 m.

Alberto quiere saber con mayor precisión cuánto debe medir cada trozo, así le sobrará menos cuerda. Para ello, saca cifras decimales en el cociente.

Cociente con una cifra decimal

Escribe en el dividendo una cifra decimal: añade una coma y un cero. Después, divide.

Cada trozo medirá 1,2 m y le sobrarán 0,6 m (6 dm). Cociente con dos cifras decimales

Escribe en el dividendo dos cifras decimales: añade una coma y dos ceros. Después, divide.

Cada trozo medirá 1,28 m y le sobrarán 0,04 m (4 cm).

En una división entera, se puede obtener el cociente con el número de cifras decimales que se desee, escribiendo el dividendo con ese mismo número de cifras decimales.

1. Explica cómo obtienes los cocientes con el número de cifras decimales indicado. Después, calcula.

Con 1 cifra decimal

Añado en el dividendo ...

5:3

26:9

• 79:25

187:34

Con 2 cifras decimales

Añado en el dividendo ...

7:4

31:6

• 58:15

253: 42

Con 3 cifras decimales

Añado en el dividendo ...

6:7

• 59:8

93:39

• 308:61

- 2. Divide 26 entre 7 y escribe en cada caso el cociente y el resto.
 - Cociente sin cifras decimales.
- Cociente con 2 cifras decimales.
- Cociente con 1 cifra decimal.
- Cociente con 3 cifras decimales.

¿Cuál es el cociente mayor? ¿Y el resto menor?

3. Calcula el cociente con el número de cifras decimales indicado.

HAZLO ASÍ

Calcula 63,5:8 con 2 cifras decimales.

- 1.º Escribe el dividendo con 2 cifras decimales: como 63.5 tiene 1 cifra decimal, añade un cero.
- 2.° Divide.

HAZLO ASÍ

Calcula 7,4:0,32 con 1 cifra decimal.

- 1.º Convierte el divisor en un número natural: multiplica el dividendo y el divisor por 100.
- 2.º Escribe el dividendo con 1 cifra decimal: añade la coma y un cero.
- 3.° Divide.

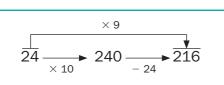
- Con 1 cifra decimal 8:3,4
- Con 2 cifras decimales 7,2:5
- Con 3 cifras decimales 12,5:6
- 7,5:4,6
- 3,18:2,9
- 9,42:0,89
- 23,1:0,95
- 46:3,7
- 28,05:6,8
- 4. Divide obteniendo cifras decimales en el cociente hasta que el resto sea cero.

HAZLO ASÍ

Divide. Después, escribe la coma en el cociente (si no está ya escrita), añade un cero en el dividendo y sigue dividiendo las veces que sea necesario.

- 8:5
- **207:9,2**
- 29:8
- 168:6,4
- 91:28
- 35:1,6
- 37.8:4
- 48,9:1,5
- 95.4:12
- 27,51:3,5
- 76.2:25
- 51,03:8,4

5. Expresa cada fracción como un número decimal.

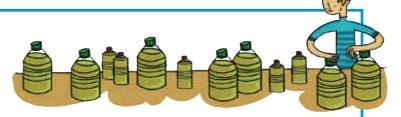

$$\frac{3}{5}$$
 3:5

► Ejemplo:
$$\frac{3}{5}$$
 3:5 ► $\frac{3,0}{0}$ $\frac{5}{0,6}$ ► $\frac{3}{5}$ = 0,6

$$\frac{7}{2}$$

CÁLCULO MENTAL

Multiplica un número natural por 9: multiplica por 10 y luego resta el número


$$230 \times 9$$

$$48 \times 9$$

$$340 \times 9$$

Problemas con decimales

En un tonel había 49,65 ℓ de aceite. Con este aceite Iván ha llenado 15 botellas de 0,75 ℓ cada una y varios bidones de 3,2 ℓ . ¿Cuántos bidones ha llenado?

1.º Calcula cuánto aceite echa en las botellas.

$$\begin{array}{r}
0,75 \\
\times 15 \\
\hline
375 \\
075 \\
\hline
11,25
\end{array}$$

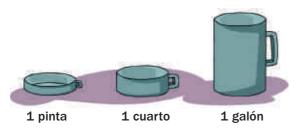
En las botellas echa 11,25 \(\extit{ }.

2.º Calcula cuánto aceite le queda para echar en los bidones.

En los bidones echa 38.4 l.

3.º Calcula cuántos bidones llena.

Llena 12 bidones.


Iván ha llenado 12 bidones de aceite.

1. Lee y resuelve.

- Javier ha comprado 3 refrescos a 0,68 € cada uno y 2 bocadillos iguales.
 Para pagar ha entregado un billete de 5 € y 4 monedas de 20 céntimos.
 ¿Cuánto le ha costado cada bocadillo?
- Sole ha hecho un viaje de 370 km. Ha calculado que, cada 100 km, ha gastado 6,08 ℓ de gasolina. ¿Cuántos litros de gasolina ha gastado en total en el viaje?

2. Observa y resuelve.

La pinta, el cuarto y el galón son unidades de capacidad anglosajonas. Fíjate en cuál es su equivalencia en litros.

1 pinta = 0,568 litros 1 cuarto = 1,136 litros 1 galón = 4,544 litros

- ¿Cuántas pintas son 1 cuarto? ¿Cuántos cuartos son 1 galón?
- En una jarra hay 3 pintas de zumo. ¿Cuántos litros hay?
- En un bidón hay 1 cuarto de gasolina. ¿Cuántos litros más de gasolina se pueden echar en el bidón si su capacidad es de 1 galón?
- Leire ha echado en un cubo 2 galones y 1 cuarto de agua. ¿Cuántos litros de agua ha echado?

3. Busca los datos en la tabla y resuelve.

	2			(20)		CIAN		13
Diámetro (en mm)	25,75	23,25	24,25	22,25	19,75	21,25	18,75	16,25
Grosor (en mm)	2,2	2,33	2,38	2,14	1,93	1,67	1,67	1,67
Peso (en g)	8,5	7,5	7,8	5,74	4,1	3,92	3,06	2,3

- ¿Cuántos milímetros mide el grosor de la moneda de 2 € más que la de 5 céntimos?
- ¿Cuántos gramos pesan 3 monedas de 20 céntimos y 2 de 50 céntimos?
- ¿Cuántos milímetros mide de largo una fila con estas monedas?

- Loreto ha hecho una torre con 4 monedas iguales.
 La altura de la torre es
 6,68 mm. ¿De qué valores pueden ser las monedas?
- 6,68 mm. ¿De qué valores pueden ser las monedas?
 Eduardo ha pesado 6 monedas del mismo valor y 2 monedas de 50 céntimos. En total,

las ocho monedas pesan 39,12 g.

¿Qué monedas ha pesado?

4. Observa el gráfico y calcula.

Cada rayita del eje son 0,2 g.

Proteínas
Grasas
Hidratos de carbono

0 1 2 3 4 5 6 7 8 9 10 Gramos

- Lucas ha tomado hoy 3 vasos de leche entera. ¿Cuántos gramos de hidratos de carbono más que de proteínas ha tomado?
- Inés ha tomado esta semana 50,4 g de grasas en los vasos de leche semidesnatada que ha bebido. Si ha tomado todos los días la misma cantidad, ¿cuántos gramos de grasas ha tomado en la leche de cada día? ¿Cuántos vasos ha bebido al día?
- RAZONAMIENTO. Observa la división resuelta y averigua, sin hacerlas, cuáles de estas divisiones dan el mismo cociente y el mismo resto que ella.

132,6 <u>2</u> 12 66,3 06 0 132,6:20

• 1.326 : 20

13,26:0,2

1.326:0,2

13,26:0,02

• 1,326 : 0,002

1,326 : 0,02

• 0,1326:0,002

Actividades

- 1. ESTUDIO EFICAZ. Explica cómo calculas cada tipo de división con números decimales. Después, calcula.
 - De un número decimal entre un natural.

45,6:3

39,78:17

123.18:6

37.506:42

De un número natural entre un decimal.

48:9.6

24:0.75

910:2,8

636:0,125

De un número decimal entre un decimal.

19,6:4,9

23,8:0,85

32,64:3,4

814,2:2,76

2. Calcula.

84,164: 7,94

• 53,9:0,275

261,8:9,35

273:18,2

134,42:26

• 74,26:0,94

3. Halla el factor que falta en cada caso.

 $8 \times \blacksquare = 191.232$

 $7.3 \times \blacksquare = 4.277.8$

 $6.37 \times \blacksquare = 96.824$

 \times 492 = 260.76

 \times 2.9 = 537.08

 \times 0,085 = 0,3145

4. En cada división, calcula el cociente con el número de cifras decimales indicado.

Con 2 cifras decimales

83:76

• 51,2:9,74

104:3.5

237,6:28

Con 3 cifras decimales

• 69:87

94.8:7.6

25:4.3

• 109,52:39

5. Divide obteniendo cifras decimales en el cociente hasta que el resto sea cero.

629:68

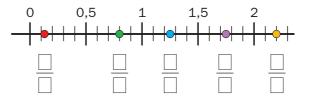
52.7:34

29.04: 9.6

213:7.5

6. Realiza estas operaciones combinadas.

6,38 + 4,56 : 3,8


• 15.2 × 9.45 : 10

 \bullet 40,48 : (12,4 - 9,87)

 \bullet (21 - 16,3): (74,82 + 25,18)

7. Expresa las siguientes fracciones como números decimales.

Copia y representa las fracciones anteriores en la recta numérica.

8. Obtén el número decimal equivalente a cada fracción, compara y escribe el signo correspondiente.

• $1 \bigcirc \frac{6}{5}$ • $0.7 \bigcirc \frac{5}{8}$ • $3.57 \bigcirc \frac{15}{4}$

• $\frac{9}{4}$ \bigcirc 2 • $\frac{17}{8}$ \bigcirc 2,2 • $\frac{5}{2}$ \bigcirc 2,22

- 9. Piensa y contesta.
 - El cociente de una división de dos números naturales, ¿puede ser decimal?
 - El cociente de una división de dos números decimales, ¿puede ser natural?
- **10.** Sin hacer la operación completa, escribe la coma del cociente de cada una de las divisiones.

9.75 : 3 = 325

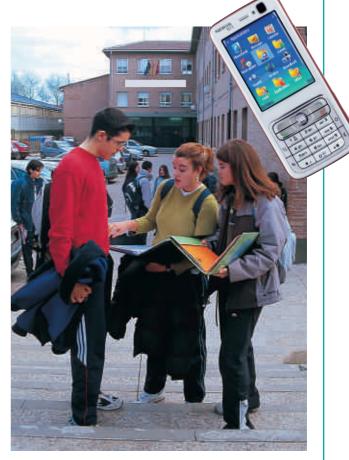
 \bullet 3.12 : 0.6 = 52

11. Resuelve.

- Cuatro amigos han ido a merendar.
 La merienda cuesta en total 24,20 €
 y la quieren pagar en partes iguales.
 ¿Cuánto paga cada uno?
- Ester necesita 20 m de cinta. La cinta se vende en rollos de 2,5 m cada uno. ¿Cuántos rollos necesita?
- En una huerta han recogido 68 kg de limones y los han repartido en 8 cestas de manera que todas pesan lo mismo y no sobra ningún limón. ¿Cuánto pesa cada cesta?
- Juanjo va a hacer una estantería. Corta un tablón de 2,8 m en baldas de 0,35 m. ¿Cuántas baldas obtiene?

- Un melón de 2,1 kg cuesta en una tienda 5,25 €. ¿Cuánto costará otro melón que pesa 1,86 kg?
- Luisa ha comprado para el jardín una mesa que costaba 37,60 € y 5 sillas iguales.
 Al pagar ha entregado 2 billetes de 50 € y le han devuelto 8,15 €.
 ¿Cuánto costaba cada silla?
 - Pedro ha preparado un zumo con 0,86 ℓ de zumo de manzana, 0,45 ℓ de fresa y 0,3 ℓ de uva. Luego lo ha repartido en 7 vasos iguales. ¿Cuántos litros de zumo ha echado en cada vaso?
 - Juan corre 4,26 km cada día de lunes a viernes y 7,8 km cada día del fin de semana. ¿Cuántos kilómetros corre a la semana?

ERES CAPAZ DE...


Calcular precios de llamadas telefónicas

Varios amigos están estudiando las tarifas telefónicas de móvil que tienen contratadas para ver si les conviene hacer algún cambio.

TARIFAS TELEFÓNICAS:

- Tarifa joven: 0,15 € por llamada más 0,09 € cada minuto.
- Tarifa fija: 0,12 € cada minuto.
- Tarifa única: 0,53 € cada llamada, sea cual sea su duración.
- Paco tiene la tarifa fija. Las llamadas de la última semana le han costado en total 3 €.
 ¿Cuántos minutos ha hablado esta semana?
- Carmen ha hecho dos llamadas con la tarifa joven, una de 5 minutos y la otra de 6 minutos.
 ¿Cuánto ha pagado por las dos llamadas?
- Marian ha hecho 3 llamadas y tiene la tarifa única. ¿Cuánto le han costado las 3 llamadas?
 Si hubiese tenido la tarifa joven, habría pagado 1,62 €. ¿Cuántos minutos habló en total?
 ¿Le habría salido más barato con la tarifa fija?

Solución de problemas

Representar datos con dibujos

Resuelve los siguientes problemas representando el dato desconocido con un dibujo. Comprueba después que la solución es correcta.

En las dos clases de 6.º recogieron alimentos para una campaña solidaria. En 6.º B recogieron 9 kg más que en 6.ºA y entre las dos clases recogieron 71 kg de alimentos. ¿Cuántos kilos recogieron en cada clase?

- No sabemos cuántos kilos se recogieron en 6.º A. Representamos ese dato con un dibujo ▶ ●
 - 1.º Escribimos los datos del problema.

Kilos que recogieron en 6.º A:

Kilos que recogieron en 6.º B: + 9

2.º Expresamos la condición del problema: la suma de las dos cantidades es 71 kg, y calculamos.

$$2 \times \bullet + 9 = 71$$

$$2 \times = 71 - 9 = 62$$

$$= 62 : 2 = 31$$

3.º Hallamos la solución.

$$6.^{\circ} B \triangleright \bigcirc + 9 = 31 + 9 = 40 \text{ kg}$$

4.° Comprobamos.

$$40 = 31 + 9$$

$$31 + 40 = 71$$

Solución: En 6.º A recogieron 31 kg de alimentos y en 6.º B recogieron 40 kg.

1. Clara contesta a las 10 preguntas de un examen. Responde bien 8 preguntas más de las que responde mal. ¿Cuántas preguntas responde bien y cuántas mal?

Mal: Bien: - + ...

Total: + + =

2. María ha comprado un disco y un libro. El disco le ha costado 2,50 € menos que el libro y por los dos ha pagado 27,50 €. ¿Cuánto ha pagado por cada artículo?

Libro:

Disco: ______

Total: - =

3. Juan ha construido la maqueta de un dragón. La cola mide 10 cm más que el cuerpo y la longitud total es 40 cm. ¿Cuánto mide la cola? ¿Y el cuerpo?

Cuerpo:

Cola: ...

Longitud total: ...

4. INVENTA. Escribe un problema similar a los que tienes en esta página que se pueda resolver expresando un dato con un dibujo. Comprueba que la solución es correcta.

EJERCICIOS

- 1. Escribe con cifras cada número. Después, halla su descomposición.
 - Cinco millones doce mil ciento tres.
 - Trece millones cuatro mil veintinueve.
 - Doscientos tres millones ochenta mil uno.

2. Escribe.

- El número anterior a 300.000.000.
- El número posterior a 175.099.899.
- El menor número par de ocho cifras.

3. Calcula.

- 9 (6 + 1)
- (5 1): 2 + 6
- 8:2+4
- 9 × 3 − 24 : 8
- 5 × (8 − 1)
- $8 2 \times 3 1$
- 7 2 × 3
- $7 \times 4 (2 + 8) : 5$

4. ESTUDIO EFICAZ. Completa las frases.

- Para sumar dos fracciones, primero ...
- Para restar dos fracciones ...
- Para multiplicar dos fracciones ...
- Para dividir dos fracciones ...

5. Calcula.

$$\frac{2}{3} + \frac{5}{6}$$
 $\frac{9}{8} - \frac{3}{4}$

$$\frac{5}{7} \times \frac{3}{8}$$

$$\frac{8}{3}:\frac{7}{6}$$

$$\frac{4}{7} + 3$$

$$8-\frac{2}{5}$$

$$\frac{4}{7} + 3$$
 $8 - \frac{2}{5}$ $\frac{6}{7} \times 2$ $5 : \frac{2}{9}$

$$5:\frac{2}{6}$$

6. Calcula.

- \bullet 4,9 + 12,675
- 12,75 × 4,9
- 8,72 − 3,989
- 0,691 × 1.000

7. Aproxima como se indica.

- A las unidades: 4,7 6,18 2,528
- A las décimas: 8,32 3,46 7,651
- A las centésimas: 1,926 2,635 5,194

PROBLEMAS

- 8. En una reunión, dos tercios de los asistentes eran mujeres y el resto eran hombres. De las mujeres, tres cuartos tenían menos de 30 años. ¿Qué parte de los asistentes eran mujeres menores de 30 años? ¿Y mujeres mayores de 30 años? ¿Qué parte eran hombres?
- 9. Juan recolectó 200 kg de cerezas. Desechó 15 kg por estar dañadas y embolsó el resto en cajas de 5 kg. Cada caja la vendió a 13,75 €. ¿Cuánto dinero obtuvo por la venta de todas las cajas?
- 10. Rosa, Laura y Pablo tienen que hacer un trabajo sobre un mismo libro. Rosa ha hecho ya dos quintos del trabajo, Laura tres décimos y Pablo dos sextos. ¿Quién ha hecho más parte del trabajo? ¿Y menos?
- **11.** En una tienda compraron 120 kilos de manzanas a 1,50 € el kilo y 80 kilos a 1,75 € el kilo. Después, vendieron cada kilo de manzanas a 1,72 €. ¿Qué beneficio obtuvieron? ¿Cuánto habría sido el beneficio si hubieran vendido el kilo 8 céntimos más caro?
- **12.** En una encuesta hecha a 405 personas, dos tercios de ellas dijeron que comían dos piezas de fruta al día, dos novenos comían una pieza y el resto no comía fruta. ¿Cuántas personas de las encuestadas no comían fruta a diario?

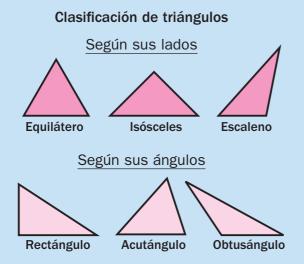
Figuras planas

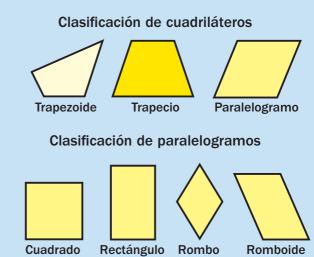
Las figuras planas están presentes en muchas situaciones de la vida diaria. En el tablero del parchís, un popular juego de mesa de origen hindú, encontramos varios tipos de polígonos y otras figuras planas.

- ¿En qué parte del tablero puedes ver cuadrados? ¿Y rectángulos?
- ¿Puedes ver algún trapecio? ¿Encuentras algún otro tipo de cuadrilátero? ¿Cuál?
- ¿Qué otros polígonos aparecen en el tablero? ¿Dónde están?
 ¿Cuántos lados, vértices y ángulos tienen?
- ¿Puedes ver otras figuras planas en el tablero? ¿Qué nombre tienen?
 ¿Son polígonos? ¿Por qué?

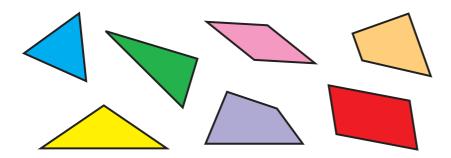
Polígonos: elementos y clasificación

Un polígono es una figura plana formada por una línea poligonal cerrada y su interior.




Los elementos de un polígono son: los lados, los vértices, los ángulos y las diagonales.

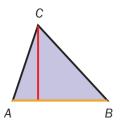
Los polígonos se pueden clasificar así:

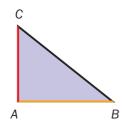

- Según el número de lados, en triángulos, cuadriláteros...
- Según sean sus lados y sus ángulos iguales o distintos, en polígonos regulares o irregulares.

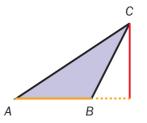
Clasificación de triángulos y cuadriláteros

1. Clasifica cada polígono teniendo en cuenta sus lados y sus ángulos.

2. Piensa y contesta.

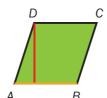

- ¿Cómo es el triángulo regular según sus lados y según sus ángulos?
- ¿Cómo se llama el cuadrilátero regular?
 ¿Cuántas diagonales tiene? ¿Cómo son?

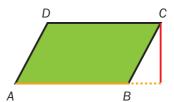

VAS A APRENDER


- A identificar una base y su o sus alturas en triángulos y paralelogramos.
- A reconocer cuál es la suma de los ángulos de un triángulo y de un cuadrilátero.
- A calcular la longitud de una circunferencia.
- A reconocer las figuras circulares y las posiciones relativas de rectas y circunferencias.

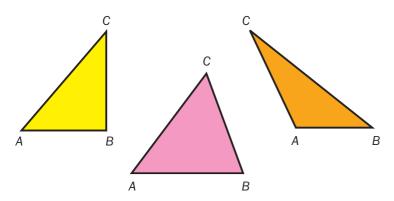
Base y altura de triángulos y paralelogramos

Patricia ha repasado de naranja una base de cada polígono y ha trazado de rojo una altura correspondiente a esa base.

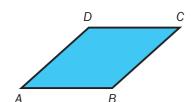


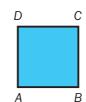

El lado AB es una base del triángulo. También lo son los lados BC y AC.

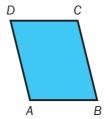
El segmento rojo es la **altura** correspondiente a la base *AB*. Es un segmento perpendicular a ella o a su prolongación, y uno de sus extremos es el vértice *C*.

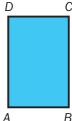


El lado AB es una base del paralelogramo. También lo son los lados BC, CD y AD.

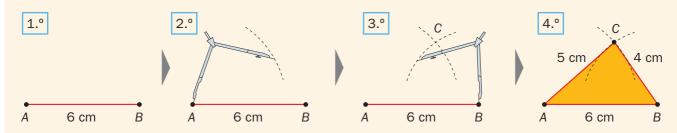

El segmento rojo es una **altura** correspondiente a la base *AB*. Es un segmento perpendicular a ella o a su prolongación, y uno de sus extremos es uno de los vértices opuestos *C* o *D*.


- Base de un triángulo o de un paralelogramo es uno cualquiera de sus lados.
- Altura de un triángulo o de un paralelogramo es un segmento perpendicular a una base o a su prolongación, trazado desde el o un vértice opuesto.
- 1. ¿Cuántas bases tienen los triángulos? ¿Y los paralelogramos? Contesta.
- 2. Calca cada triángulo y traza, con una escuadra o un cartabón, la altura correspondiente a la base AB.




- ¿En qué triángulo coincide la altura con uno de sus lados?
 Clasifícalo según sus ángulos.
- ¿En qué triángulo has prolongado la base para trazar la altura?
 Clasifícalo según sus ángulos.
- ¿En qué triángulo has dibujado la altura en su interior?
 Clasifícalo según sus ángulos.

3. Calca cada paralelogramo y traza, con una escuadra o un cartabón, la altura correspondiente a la base *AB* desde el vértice *D*.


- ¿En qué paralelogramos coincide la altura con uno de sus lados?
 ¿En cuál has prolongado la base para trazar la altura?
- ¿Desde qué otro vértice puedes trazar la altura a la base AB? Trázala.

TALLER

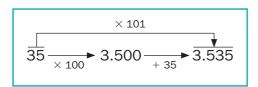
Trazado de un triángulo de lados conocidos

Para trazar un triángulo ABC cuyos lados miden 6 cm, 5 cm y 4 cm, sigue estos pasos:

- 1.º Dibuja con la regla un segmento AB de 6 cm.
- 2.º Abre el compás 5 cm, pincha en el punto A y traza un arco.
- 3.º Abre el compás 4 cm, pincha en el punto B y traza un arco que corte al anterior en el punto C.
- 4.º Une los puntos A y B con C para formar los lados del triángulo. Después, colorea el interior.

4. Traza los siguientes triángulos y clasifícalos.

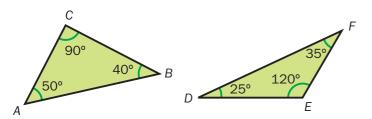
Un triángulo ABC cuyos lados midan 4 cm, 3 cm y 5 cm.


¿Cuánto miden las tres bases? Traza la altura de la base AB.

Un triángulo *DEF* cuyos lados midan 3 cm, 3 cm y 5 cm.

¿Cuánto miden las tres bases? Traza la altura de la base *DE*.

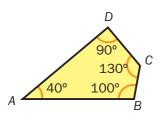
CÁLCULO MENTAL

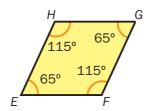

Multiplica un número natural por 101: multiplica por 100 y luego suma el número

$17 \times 101 \qquad \qquad 39 \times 101 \qquad \qquad 63 \times 100 $	
18 × 101 42 × 101 75 >	< 101
26 × 101 54 × 101 89 >	< 101
25 × 101 58 × 101 92 >	< 101

Suma de los ángulos de triángulos y cuadriláteros

¿Cuánto suman todos los ángulos de estos triángulos?

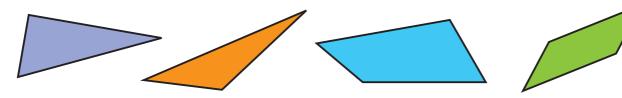

Triángulo rectángulo:


$$50^{\circ} + 40^{\circ} + 90^{\circ} = 180^{\circ}$$

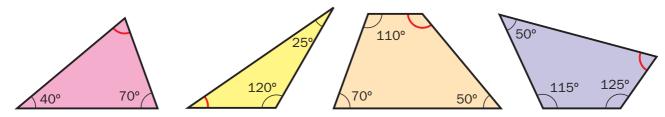
Triángulo obtusángulo:

$$25^{\circ} + 120^{\circ} + 35^{\circ} = 180^{\circ}$$

¿Cuánto suman todos los ángulos de estos cuadriláteros?


Trapezoide:

$$40^{\circ} + 100^{\circ} + 130^{\circ} + 90^{\circ} = 360^{\circ}$$


Paralelogramo:

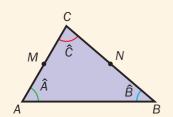
$$2 \times 65^{\circ} + 2 \times 115^{\circ} = 360^{\circ}$$

- La suma de los ángulos de un triángulo es igual a 180°.
- La suma de los ángulos de un cuadrilátero es igual a 360°.
- 1. ¿Cuánto suman los ángulos de cada polígono? Contesta. Después, mídelos y comprueba tu respuesta.

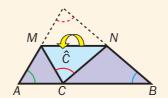
2. Averigua en cada caso cuánto mide el ángulo coloreado de rojo.

- 3. Lee y calcula.
 - Dos ángulos iguales de un triángulo miden cada uno 50°. ¿Cuánto mide el otro ángulo?
 - Dos ángulos opuestos de un paralelogramo miden cada uno 80°. ¿Cuánto mide cada uno de los otros dos ángulos?

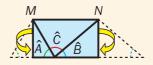
4. Lee y calcula.

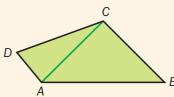

PRESTA ATENCIÓN

Los triángulos equiláteros tienen los 3 lados y los 3 ángulos iguales. Los triángulos isósceles tienen 2 lados y 2 ángulos iguales.


- ¿Cuánto mide cada ángulo de un triángulo equilátero?
- El ángulo desigual de un triángulo isósceles mide 100°. ¿Cuánto mide cada uno de los otros dos ángulos?

TALLER Suma de los ángulos de un triángulo y de un cuadrilátero


- Comprueba, sin utilizar el transportador, que los ángulos del triángulo *ABC* suman 180°. Calca el triángulo y sigue estos pasos:
 - 1.º Marca los puntos *M* y *N*, puntos medios de los lados *AC* y *CB*, respectivamente.

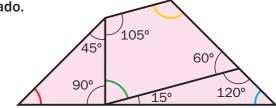

2.º Traza el segmento *MN* y dobla el triángulo por dicho segmento.

3.° Dobla de manera que los vértices A y B coincidan con C. Los tres ángulos \hat{A} , \hat{B} y \hat{C} suman 180°.

 Comprueba, sin utilizar el transportador, que los ángulos del cuadrilátero ABCD suman 360°.

Calca el cuadrilátero y traza una diagonal, descomponiendo así el cuadrilátero en dos triángulos: *ABC* y *ACD*.

Como los ángulos de cada triángulo suman 180°, los ángulos del cuadrilátero suman 180° + 180° = 360°.


- 5. Traza y recorta un triángulo. Comprueba que sus ángulos miden 180°.
- 6. Traza y recorta un cuadrilátero. Comprueba que sus ángulos miden 360°.
- 7. Observa la figura y calcula cuánto mide cada ángulo coloreado.

8. RAZONAMIENTO. Piensa y calcula.

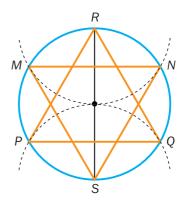
- Un ángulo de un triángulo rectángulo mide 55°. ¿Cuánto mide cada uno de los otros dos ángulos?
- Un ángulo de un rombo mide 70°. ¿Cuánto mide cada uno de los otros tres ángulos?

La circunferencia. Elementos

La **circunferencia** es una línea curva cerrada y plana, cuyos puntos están todos a la misma distancia del centro.

Los elementos de la circunferencia son los siguientes:

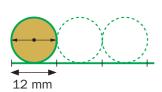
- Centro. Es el punto equidistante de todos los puntos de la circunferencia.
- Radio. Es un segmento que une el centro con un punto de la circunferencia.
- Cuerda. Es un segmento que une dos puntos de la circunferencia.
- Diámetro. Es una cuerda que pasa por el centro.
 Su longitud es el doble de la longitud de un radio.
- Arco. Es la parte de la circunferencia comprendida entre dos puntos.
- Semicircunferencia. Es un arco igual a la mitad de la circunferencia.

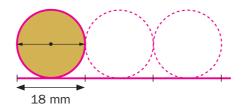


1. Traza una circunferencia con centro en un punto 0 y de 3 cm de radio.

- Marca en la circunferencia tres puntos A, B y C.
 ¿A qué distancia están estos puntos del centro O? Dibuja los radios y compruébalo.
- Dibuja un diámetro. ¿Cuánto mide? Compruébalo.
- 2. Traza una circunferencia y dibuja.
 - Un radio.
- Un diámetro.

Una cuerda.


- Un arco.
- Una semicircunferencia.
- 3. Dibuja una estrella como la de la derecha siguiendo estos pasos. Después, contesta.
 - 1.º Dibuja una circunferencia de 2 cm de radio.
 - 2.º Traza un diámetro RS.
 - 3.º Abre el compás los 2 cm que mide el radio, pincha en el punto *R* y traza un arco que corte a la circunferencia en los puntos *M* y *N*.
 - 4.° Traza tres cuerdas: MN, MS y NS.
 - 5.° Abre el compás los 2 cm que mide el radio, pincha en el punto S y traza un arco que corte a la circunferencia en los puntos *P* y *Q*.
 - 6.° Traza tres cuerdas: PQ, RP y RQ.
 - ¿Qué polígono forman las cuerdas trazadas en el punto 4.º?
 Clasifícalo según sus lados y según sus ángulos.
 - ¿Cómo es el hexágono central: regular o irregular?



El número π y la longitud de la circunferencia

Félix bordea con una cinta dos círculos de cartón, es decir, marca las circunferencias.

Al estirar las cintas, Félix observa que la longitud de cada circunferencia es un poco más de 3 veces el diámetro del círculo.

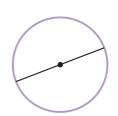
Félix comprueba que:

- Al dividir la longitud de la circunferencia entre el diámetro del círculo, el cociente es siempre el mismo número cuyo valor aproximado es 3,14. Ese número se llama π (pi).
- La longitud de la circunferencia es, aproximadamente, el producto de 3,14 por el diámetro, es decir, 3,14 por 2 veces el radio.

$$\frac{L}{d} = \pi = 3,14$$

$$L = \pi \times d = \pi \times 2 \times r$$

Observa cómo calcula la longitud de las dos circunferencias.

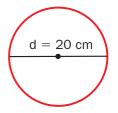

$$L = 3,14 \times 12 \text{ mm} = 37,68 \text{ mm}$$

$$9 \text{ mm}$$
 $\triangleright L = 3,14 \times 2 \times 9 \text{ mm} = 56,52 \text{ mm}$

La longitud de la circunferencia es igual al producto de 3,14 por su diámetro.

$$L = \pi \times d = 2 \times \pi \times r$$

 Mide en milímetros el diámetro de cada circunferencia y calcula su longitud.


- 2. Traza una circunferencia de 3 cm de radio y calcula su longitud.
- 3. Resuelve.

El radio de las ruedas de una bicicleta mide 25 cm. ¿Cuántos centímetros avanzará la rueda cada vez que dé una vuelta completa?

4. RAZONAMIENTO. Piensa y di si esta frase es verdadera. Después, calcula y comprueba.

Si el diámetro de una circunferencia es el doble que el diámetro de otra, su longitud también es el doble.

El círculo y las figuras circulares

El **círculo** es una figura plana formada por una circunferencia y su interior.

Las principales figuras circulares son las siguientes:

Sector circular

Es la parte del círculo limitada por dos radios y uno de sus arcos.

Segmento circular

Es la parte del círculo limitada por una cuerda y uno de sus arcos.

Semicírculo

Es la mitad del círculo. Está limitado por un diámetro y una de sus semicircunferencias.

Corona circular

Es la parte del círculo limitada por dos circunferencias que tienen el mismo centro (concéntricas).

1. Escribe el nombre de cada figura circular.

- 2. Dibuja cada figura circular y explica cómo lo has hecho.
 - Ejemplo:

Un sector circular

- 2.° Trazo dos radios.
- 3.º Repaso uno de sus arcos.
- 4.º Coloreo el interior.

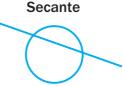
Un segmento circular

Un semicírculo

Una corona circular

- 3. Piensa y contesta.
 - Si trazas dos radios, ¿cuántos sectores circulares puedes colorear?
 - Si trazas una cuerda, ¿cuántos segmentos circulares puedes colorear?
 - Si trazas un diámetro, ¿cuántos semicírculos puedes colorear?
 - El semicírculo, ¿es un sector circular? ¿Por qué?
 - El semicírculo, ¿es un segmento circular? ¿Por qué?

Posiciones relativas de rectas y circunferencias


 Una recta puede tener las siguientes posiciones respecto de una circunferencia.

Exterior

No tienen ningún punto en común.

Tienen un punto en común.

Tienen dos puntos

Tangentes

interiores

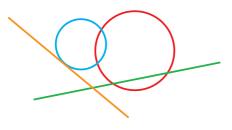
Dos circunferencias pueden tener las siguientes posiciones entre sí.

Exteriores

Interiores

No tienen ningún punto en común.

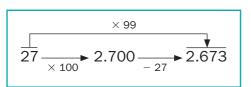
Tangentes exteriores


Tienen un punto en común.

Secantes

Tienen dos puntos en común.

1. Copia la figura y completa.


- La recta naranja es ... a la circunferencia azul y es ... a la circunferencia roja.
- La recta verde es ... a la circunferencia ... y es ... a la circunferencia ...
- Las circunferencias ... y ... son ...

2. Copia la figura de la actividad 1 y dibuja.

- Una recta tangente a la circunferencia roja y secante a la circunferencia azul.
- Una circunferencia interior a la circunferencia roja y exterior a la circunferencia azul.

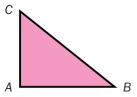
CÁLCULO MENTAL

Multiplica un número natural por 99: multiplica por 100 y luego resta el número

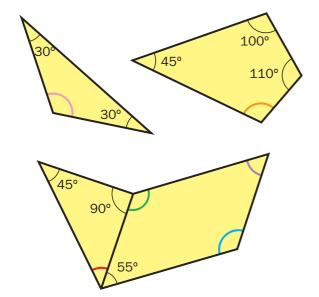
11×99	45 × 99	72×99
12 × 99	56 × 99	76 × 99
23 × 99	57×99	88 × 99
34×99	63 × 99	99 × 99

Actividades

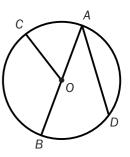
1. Calca estos triángulos, repasa una base de azul y traza de color rojo su altura.



2. Calca estos paralelogramos, repasa una base de azul y traza de color rojo sus dos alturas.



3. Contesta.



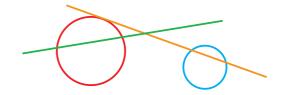
- ¿Cuál es la altura del triángulo correspondiente a la base AB?
 ¿Y la altura de la base CA?
- ¿Cuál es la altura del rectángulo correspondiente a la base AB desde C?
 ¿Y a la base CB desde A?
- 4. Averigua en cada caso cuánto mide cada ángulo coloreado.

- 5. Observa y completa.
 - El punto O es ...
 - El segmento AB es ...
 - El segmento OC es ...
 - El segmento AD es ...

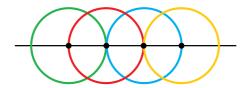
- **6.** Copia la figura de la actividad 5 y colorea. Después, contesta.
 - Un arco AC.
 - Una semicircunferencia.
 - Un sector circular.
 - Un segmento circular.
 - ¿Podías haber repasado otro arco AC?
 ¿Y otra semicircunferencia?
 - ¿Cuántos sectores circulares puedes colorear? ¿Qué radios y arcos lo limitan?
 - ¿Cuántos segmentos circulares puedes colorear? ¿Qué cuerdas y arcos lo limitan?
- 7. ESTUDIO EFICAZ. Completa el esquema.

ELEMENTOS DE UNA CIRCUNFERENCIA

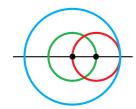
Centro ► Es el punto ...


Radio ► Es un segmento ...

8. Mide y calcula la longitud de cada circunferencia.



9. Observa y escribe cómo es cada recta respecto a cada circunferencia.



10. Copia la figura y escribe cómo son entre sí la circunferencia verde y cada una de las otras tres.

11. Observa y escribe el color de dos circunferencias que sean:

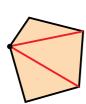
- Interiores.
- Secantes.
- Tangentes interiores.

12. Resuelve.

- El lado de un cuadrado mide 4 cm. ¿Cuánto mide cada base? ¿Cuánto mide la altura de una de esas bases?
- Miguel quiere hacer con un alambre un aro de 5 cm de radio. ¿Cuántos centímetros medirá el alambre?
- Eva quiere poner una valla alrededor de una piscina circular de 4 m de diámetro.
 Cada metro de valla cuesta 5 €.
 ¿Cuánto cuesta en total la valla?
- Una rueda de un triciclo mide 12,5 cm de radio. ¿Cuántos centímetros avanza la rueda cada vez que da una vuelta completa? ¿Cuántas vueltas tiene que dar para recorrer 471 cm?

ERES CAPAZ DE...

Calcular la suma de los ángulos de un polígono


Ya sabes que los ángulos de un triángulo suman 180°. Con esta información, puedes averiguar cuántos grados suman los ángulos de todos los polígonos que conoces.

Dibuja cada polígono y traza, desde uno de sus vértices, todas las diagonales. ¡Ya has dividido el polígono en triángulos! Después, calcula la suma de sus ángulos.

Un cuadrilátero

- Número de triángulos: ...
- Suma de los ángulos:
 180° + 180° = 2 × 180° = ...

Un pentágono

- Número de triángulos: ...
- Suma de los ángulos:

$$... + ... + ... = ... \times 180^{\circ} = ...$$

Un hexágono

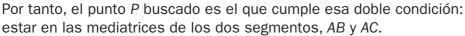
Un heptágono

Un octógono

Un eneágono

•

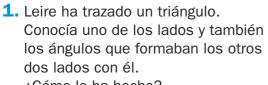
Solución de problemas

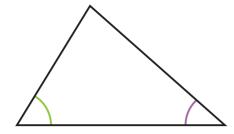

Imaginar el problema resuelto

En algunos problemas geométricos, es útil trazar una figura aproximada a la que queremos dibujar para averiguar cómo podemos construirla. Resuelve estos problemas de esa manera.

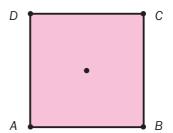
Mireia ha dibujado tres puntos, A, B y C, en una hoja y quiere hallar un punto P que esté a la misma distancia de los tres puntos. ¿Cómo puede hacerlo?

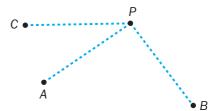
Imaginamos el problema resuelto y hacemos un dibujo aproximado para deducir, a partir de él, qué tenemos que hacer para hallar ese punto P.

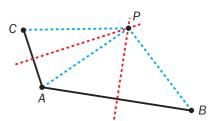

Ese punto P, por estar a la misma distancia de A y B, es un punto de la mediatriz del segmento AB. Igualmente, por estar a la misma distancia de A y C, está en la mediatriz del segmento AC.


Para hallar el punto *P* haremos lo siguiente:

- 1.° Trazar el segmento AB y el segmento AC.
- 2.º Hallar las mediatrices de esos dos segmentos.
- 3.º El punto P será el punto de corte de esas dos mediatrices.


Haz en tu cuaderno la construcción y comprueba que el método es correcto.


¿Cómo lo ha hecho?



2. Antonio ha dibujado un cuadrado de vértices A, B, C y D. Quiere encontrar un punto que esté a la misma distancia de los cuatro vértices del cuadrado. ¿Cómo puede hacerlo?

EJERCICIOS

- 1. Escribe cómo se lee cada número.

- **8.023**
- 9.425.26
- 0.036

- 2. Expresa con cifras.
 - Cinco veinteavos.
 - Trece cuartos.
 - Siete unidades y ocho décimas.
 - Doce unidades y seis milésimas.
- 3. Descompón cada número.
 - 2.75
- 4.91.086
- 34.05

- 4. Calcula.
 - $\frac{3}{5} + \frac{6}{5} \frac{7}{15}$ $\left(\frac{5}{2} \frac{5}{3}\right) : \frac{3}{7}$
- - $\frac{2}{3} \times \left(\frac{4}{6} \frac{1}{12}\right)$ $\frac{8}{9} \frac{2}{9} : \frac{3}{2}$
- 5. Ordena cada grupo de menor a mayor.
 - 9,69
- 10
- 9,71
- 9.8 9.705
- 2,1352,142,1432,2
- 2,139

- 6. Calcula.
 - \bullet 3.8 + 9.637
- **2.48:8**
- 17,52 8,145
- **864**: 6,75
- 4.9 × 3.85
- 18,24:7,6
- 2.25 × 1.000
- **31,9:1.000**
- 7. ESTUDIO EFICAZ. Estas aproximaciones están mal hechas. Explica por qué y escríbelas bien.
 - A las unidades: 13,4 ▶ 14
 - A las décimas: 3.762 ➤ 3.76
 - A las centésimas: 5,187 ➤ 5,18

PROBLEMAS

- 8. Eulalia tenía en su hucha 64 monedas iguales, cuyo valor total era 12.80 €. Ayer compró un libro entregando 15 de esas monedas y un billete de 10 €. ¿Cuánto costaba el libro?
- 9. En un campamento han preparado 92 litros de zumo de naranja. Al verterlo en vasos de 0,33 \ell se han perdido 0,26 \ell de zumo. ¿Cuántos vasos de zumo se han obtenido?
- 10. Cuatro novenos de los 27 alumnos de 6.º A y cinco octavos de los 24 alumnos de 6.º B van al colegio andando. ¿En qué clase van más alumnos andando? ¿Cuántos alumnos de 6.º B no van andando?

- **11.** Miguel ha comprado 6 bolsitas iguales de magdalenas que pesan en total tres cuartos de kilo. El precio de un kilo de magdalenas es 16 €. ¿Cuánto cuesta cada bolsita?
- **12.** Ayer, cuatro entradas para una obra de teatro costaban 68 €. Hoy, cada entrada cuesta 2 € menos que ayer. Lidia va a ir a ver la obra con 5 amigos. ¿Cuánto costarán las entradas del grupo?
- 13. Una nevera costaba 725 €. Sara pagó 120 € de entrada y el resto lo tiene que pagar en 5 plazos iguales. Le quedan por pagar 2 plazos. ¿Cuánto dinero ha pagado ya?

Repaso trimestral

NÚMEROS

1. Expresa.

La parte coloreada de la figura.

- En forma de número mixto ▶ ...
- En forma de fracción ▶ ...
- Cada fracción en forma de número mixto.

Cada número mixto en forma de fracción.

$$4\frac{3}{7}$$

$$2\frac{5}{9}$$

$$4\frac{3}{7}$$
 $2\frac{5}{9}$ $5\frac{2}{5}$ $7\frac{1}{4}$ $3\frac{4}{6}$

$$7\frac{1}{4}$$

- 2. Escribe las fracciones del recuadro que cumplen cada condición.
 - Equivalentes a $\frac{2}{3}$.
 - Equivalentes a $\frac{3}{5}$.
- 20 15 <u>10</u> 30 25 10 16 14 18 50 18 24 35 30
- 3. Escribe dos fracciones equivalentes a cada fracción dada.

Por amplificación						
$\frac{1}{4}$	<u>2</u> 5	$\frac{3}{7}$	<u>5</u> 6	$\frac{4}{9}$		

	Por	simplifica	nción	
8 20	12 18	<u>16</u> 24	14 28	$\frac{30}{45}$

4. Reduce a común denominador.

$$\frac{1}{4} y \frac{2}{5}$$

$$\frac{7}{9}$$
 y $\frac{2}{3}$

$$\frac{8}{10} \text{ y } \frac{9}{25}$$

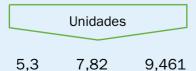
$$\frac{5}{14}$$
 y $\frac{6}{21}$

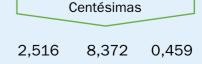
$$\frac{5}{14}$$
 y $\frac{6}{21}$ $\frac{4}{6}$, $\frac{5}{8}$ y $\frac{8}{12}$

5. Compara las fracciones y escribe el signo correspondiente.

$$\bullet$$
 $\frac{5}{8}$ \bigcirc $\frac{6}{8}$

$$\bullet \ \frac{4}{9} \bigcirc \frac{4}{7}$$


$$\bullet$$
 $\frac{7}{5}$ \bigcirc $\frac{8}{6}$


•
$$\frac{9}{12}$$
 \bigcirc $\frac{15}{24}$

$$\bullet \frac{5}{8} \bigcirc \frac{6}{8} \qquad \bullet \frac{4}{9} \bigcirc \frac{4}{7} \qquad \bullet \frac{7}{5} \bigcirc \frac{8}{6} \qquad \bullet \frac{9}{12} \bigcirc \frac{15}{24} \qquad \bullet \frac{7}{16} \bigcirc \frac{11}{20}$$

6. Escribe cómo se lee cada número. Después, ordénalos de mayor a menor.

7. Aproxima estos números decimales a la unidad indicada.

OPERACIONES

1. Calcula.

$$\frac{7}{4} + \frac{5}{6}$$

$$\frac{9}{10} + \frac{11}{15}$$

$$\frac{7}{4} + 4$$

$$\frac{3}{4} + \frac{7}{9} + \frac{5}{12}$$

$$\frac{5}{8} - \frac{7}{10}$$

$$\frac{5}{6} - \frac{13}{18}$$

$$\frac{20}{3} - 5$$

$$\frac{2}{5} \times \frac{3}{7}$$
 $\frac{9}{4} \times \frac{5}{6}$
 $\frac{2}{9} : \frac{5}{8}$
 $\frac{3}{8} \times 7$
 $\frac{30}{7} : \frac{10}{8}$
 $\frac{10}{17}$
 $\frac{1}{8} \times \frac{10}{17}$

2. Recuerda el orden en que debes hacer las operaciones y calcula.

$$\frac{7}{10} + \frac{5}{6} \times \frac{3}{5}$$

$$\frac{8}{9} - \frac{1}{5} : \frac{3}{7}$$

$$\frac{7}{10} + \frac{5}{6} \times \frac{3}{5} \qquad \frac{8}{9} - \frac{1}{5} : \frac{3}{7} \qquad \frac{15}{16} - \left(\frac{3}{8} + \frac{2}{5}\right) \qquad \left(\frac{7}{3} - \frac{5}{6}\right) \times \frac{2}{7} \qquad \frac{3}{2} : \left(\frac{5}{8} + \frac{7}{12}\right)$$

$$\left(\frac{7}{3} - \frac{5}{6}\right) \times \frac{2}{7}$$

$$\frac{3}{2}:\left|\frac{5}{8}+\frac{7}{12}\right|$$

3. Calcula.

$$0,359 + 8,671$$
 $7,286 + 19,45$
 $3,14 + 2,6 + 5,973$

$$3,68 \times 9$$

 $4,53 \times 7,2$
 $2,805 \times 5,6$

4. Recuerda el orden en que debes hacer las operaciones y calcula.

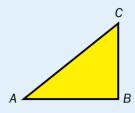
6. Expresa cada fracción como un número decimal.

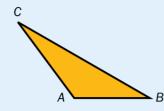
$$\frac{7}{2}$$

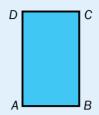
CÁLCULO MENTAL

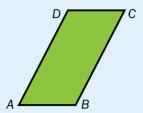
$$34 \times 2$$

 56×2
 423×2
 84×5
 56×5

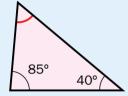

$$25 \times 11$$
 43×11
 56×101
 17×9
 28×99

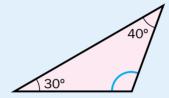


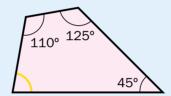

Repaso trimestral

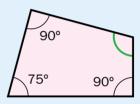

GEOMETRÍA

1. Calca cada polígono y dibuja la altura correspondiente a la base AB, desde el vértice C. Después, contesta.









- ¿En qué polígonos coincide la altura con uno de sus lados? Clasifícalos.
- ¿En qué polígonos has prolongado la base para trazar la altura? Clasifícalos.
- 2. Averigua en cada caso cuánto mide el ángulo coloreado.

- 3. Traza dos circunferencias, una de 2 cm de radio y la otra de 8 cm de diámetro.
- 4. En una de las circunferencias de la actividad 3, dibuja cada elemento del color indicado.

Un radio.

Un diámetro.

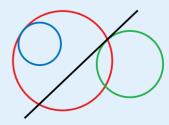
Una cuerda.

Un arco.

Una semicircunferencia.

5. Calcula.

- Un ángulo de un triángulo rectángulo mide 70°.
 ¿Cuánto mide cada uno de los otros dos?
- Cada ángulo agudo de un rombo mide 70°.
 ¿Cuánto mide cada ángulo obtuso?
- ¿Cuánto mide la longitud de una circunferencia de 5 cm de radio?
- ¿Cuánto mide la longitud de una circunferencia de 9 cm de diámetro?
- 6. Copia cada figura circular y escribe debajo su nombre.



¿Qué limita en cada figura la parte de círculo coloreada?

- 7. Observa la figura y contesta.
 - ¿Cómo son entre sí cada par de circunferencias?
 Las circunferencias ... y ... son ...
 - ¿Cómo es la recta respecto a cada circunferencia?
 La recta es ... respecto a la circunferencia ...

PROBLEMAS

1. Resuelve.

En un circo se han vendido 1.470 entradas. Dos tercios de las entradas eran infantiles, un quinto eran de adulto y el resto eran para la tercera edad. ¿Cuántas entradas se vendieron para la tercera edad?
 Cada entrada de adulto cuesta 18,60 €, las infantiles cuestan la mitad que las de adulto y las entradas para la tercera edad 5,80 € menos que las infantiles. ¿Cuánto costaba cada tipo de entrada?

Óscar y Marta están vendiendo un taco de papeletas para una rifa.
 Óscar ha vendido ya 3 séptimos del taco y Marta, 2 quintos.
 ¿Quién ha vendido más entradas? ¿Qué fracción del taco de papeletas han vendido en total? ¿Qué fracción del taco les queda por vender?
 Si el taco tenía 140 papeletas, ¿cuántas papeletas ha vendido cada uno?
 ¿Cuántas les faltan por vender?

- Javier ha comprado 1 kilo y tres cuartos de fruta. Las manzanas pesaban 5 sextos de kilo y el resto eran ciruelas. ¿Cuánto pesaban las ciruelas?
- Cristina ha comprado 3 quesos que pesaban 4 quintos de kilo cada uno. ¿Qué fracción de kilo pesaban los tres quesos en total?
- Álvaro ha comprado 5 octavos de kilo de carne de ternera y ha pedido que le piquen la cuarta parte. ¿Qué fracción de kilo pesa la carne picada?
- Marisa ha comprado 1,215 kg de jamón, 0,760 kg de chorizo y 0,425 kg de mortadela. Ha hecho 12 bocadillos metiendo 0,15 kg de fiambre en cada uno. ¿Cuántos kilos de fiambre le han sobrado?
- Carmen ha llenado de agua 3 peceras de 14,5 l de capacidad y 2 peceras de 23,84 l.
 ¿Cuántos litros de agua ha echado en total en las peceras?
- Gonzalo ha comprado 1,4 kg de gominolas y las ha repartido en bolsitas de 0,35 kg cada una. ¿Cuántas bolsitas ha llenado?
- Alex ha comprado un tablero de 2 m de largo para hacer una estantería. Quiere cortarlo en baldas de 0,3 m cada una. ¿Cuántas baldas obtendrá? ¿Cuántos metros de tablón le sobrarán?

11

Proporcionalidad y porcentajes

Escala 1: 140

las dimensiones reales de cada habitación?

RECUERDA LO QUE SABES

Porcentaje

65% es un porcentaje.

Se lee 65 por ciento.

$$65\% = \frac{65}{100} = 0.65$$

Cálculo de porcentajes

■ 65% =
$$\frac{65}{100}$$
 ► 65% de 75 = $\frac{65}{100}$ de 75 = $\frac{65 \times 75}{100}$ = $\frac{4.875}{100}$ = 48,75
■ 65% = 0,65 ► 65% de 75 = 0,65 × 75 = 48,75

El 65% de 75 es 48,75.

Metro, centímetro y kilómetro. Equivalencias

- $4.5 \text{ km} = 4.5 \times 1.000 = 4.500 \text{ m}$
- $7,69 \text{ m} = 7,69 \times 100 = 769 \text{ cm}$
- \bullet 85 m = 85 : 1.000 = 0.085 km
- 352 cm = 352 : 100 = 3,52 m
- 0,3 km = 0,3 \times 100.000 = 30.000 cm • 5.400 cm = 5.400 : 100.000 = 0,054 km

1. Explica qué significa cada frase.

- El 25% de los coches vendidos en marzo eran rojos.
- El 50% de los pasteles de la bandeja tienen crema.
- El 75% de los refrescos del bar son de cola.

2. Escribe cada porcentaje de la actividad anterior en forma de fracción y de número decimal.

3. Calcula.

8% de 25 35 % de 40 72 % de 150 9% de 63 48% de 95 84% de 265

4. Expresa en la unidad indicada.

 $6,2 \text{ km} = \dots \text{ m}$ $8.700 \text{ m} = \dots \text{ km}$ $15 \text{ m} = \dots \text{ cm}$ $900 \text{ cm} = \dots \text{ m}$ $0.04 \text{ km} = \dots \text{ cm}$ 35.000 cm = ... km

VAS A APRENDER

- A identificar series de números proporcionales y completar tablas de proporcionalidad.
- A resolver problemas de proporcionalidad.
- A calcular porcentajes y resolver problemas de porcentajes.
- A interpretar mapas y planos a escala.

Proporcionalidad. Problemas

Sara y sus amigos van a jugar al minigolf.
 Cada partida cuesta 8 € por persona.
 ¿Puede calcular Sara cuánto cuesta jugar una partida a 2, 3, 4 o 5 personas?

Sí, puede calcular cuánto cuesta la partida porque el precio total es **proporcional** al número de personas que jueguen.

× 8	N.º de personas	1	2	3	4	5	:8
	Precio en euros	8	16	24	32	40	

Fíjate en la tabla: puedes pasar de los números de una fila a los de la otra, multiplicando o dividiendo por 8.

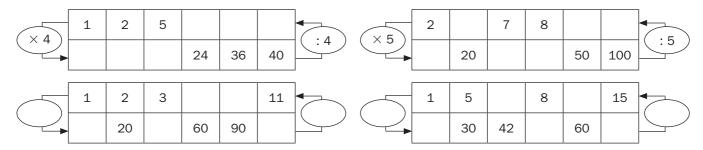
Por eso, las series 1, 2, 3, 4, 5 y 8, 16, 24, 32, 40 son series de **números proporcionales**, y la tabla se llama **tabla de proporcionalidad**.

• En el primer hoyo, Sara ha tenido que dar 4 veces a la pelota para meterla. ¿Puede saber cuántas veces dará a la pelota para meterla en 2, 3, 4 o 5 hoyos?

No, porque no siempre va a dar 4 veces a la pelota para meterla en el hoyo. El número de veces que da a la pelota no es **proporcional** al número de hoyos.

No se puede construir una tabla de proporcionalidad.

1. Lee y contesta.


- Andrés está comprando pelotas de tenis. En cada bote hay 3 pelotas.
 - ¿Puedes saber cuántas pelotas hay en 2 botes? ¿Y en 4 botes?
 - ¿Es proporcional el número de pelotas de tenis al número de botes?
 ¿Por qué?

- Claudia tiene 1 año. Pesa 11 kg.
 - ¿Puedes saber cuánto pesará cuando tenga 2 años?
 ¿Y cuando tenga 5 años?
 - ¿Es proporcional el peso de una persona a su edad?¿Por qué?

2. Copia y completa estas tablas de proporcionalidad.

3. Copia y completa cada tabla de proporcionalidad. Después, resuelve.

PRESTA ATENCIÓN

Debes calcular primero el precio que tiene una entrada. Para pasar de la primera fila a la segunda hay que multiplicar por ese número, y para pasar de la segunda fila a la primera hay que dividir entre él.

- Elsa ha pagado 21 € por 3 entradas de cine.
 - ¿Cuánto cuestan 5 entradas? ¿Y 8 entradas?
 - ¿Cuántas entradas podría comprar con 70 €?

×	N.º de entradas	1	3	5	8		
\(\)	Precio total (€)		21			70	

- Luis ha utilizado 20 huevos para hacer 4 tortillas iguales.
 - ¿Cuántos huevos necesita para hacer 5 tortillas? ¿Y 7 tortillas?
 - ¿Cuántas tortillas puede hacer con 40 huevos? ¿Y con 45 huevos?

<u></u>	N.º de tortillas	1	4			•
	N.º de huevos		20			Ľ

4. Resuelve.

Un pastelero utiliza 3 litros de leche para hacer 18 tartas iguales.

¿Cuántas tartas puede hacer con 2 litros de leche? ¿Y con 4 litros?

Marisa corre 6 km en 30 minutos. ¿Cuántos kilómetros recorrerá en 50 minutos, si va siempre al mismo ritmo? ¿Cuántos recorrerá en 1 hora?

Óscar utiliza 25 bolsas iguales para envasar 75 kg de limones.

¿Cuántos kilos de limones envasará en 30 bolsas? ¿Cuántas bolsas necesita para envasar 120 kg de limones? Paloma compra 7 sobres de cromos de fútbol. En total ha comprado 28 cromos. ¿Cuántos cromos conseguirá comprando 4 sobres? ¿Y 10 sobres? ¿Cuántos sobres necesita comprar para conseguir 24 cromos? ¿Y para conseguir 72 cromos?

CÁLCULO MENTAL

Estima sumas aproximando los números decimales a las unidades

$$3.8 + 2.1 \xrightarrow{3.8 \triangleright 4} 4 + 2 = 6$$

Problemas de porcentajes

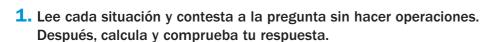
En un museo hay 80 cuadros expuestos. El 45 % de los cuadros son paisajes, el 35 % son retratos y el resto son bodegones.

• ¿Cuántos cuadros hay expuestos de cada tipo?

Paisajes ▶ 45 % de 80 = 36

Retratos ▶ 35% de 80 = 28

Bodegones \triangleright 80 - (36 + 28) = 80 - 64 = 16


Hay 36 paisajes, 28 retratos y 16 bodegones.

• ¿Qué porcentaje de los cuadros son bodegones?

La suma de todos los porcentajes debe ser el 100%.

Porcentaje de bodegones: 100% - (45% + 35%) = 100% - 80% = 20%

El 20% de los cuadros son bodegones.

¿Quién pega más imanes en la nevera? ¿Por qué?

- Diego y Marina tienen 20 imanes cada uno.
 Diego pega en la nevera el 35% de sus imanes y Marina el 20% de los suyos.
- Pedro tiene 16 imanes y Zaida tiene 12.
 Los dos pegan el 25% de sus imanes en la nevera.
- 2. Calcula el precio rebajado de cada artículo y completa las tablas.

Todos los artículos están rebajados un 25%.

	Precio sin rebaja	Precio rebajado
Zapatos	46 €	
Sandalias	35 €	
Deportivas	38 €	

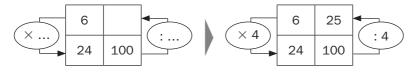
3. Calcula.

- Andrea ha comprado un ordenador que cuesta 835 € más el 16% de IVA. Paga con dos billetes de 500 €. ¿Cuánto dinero le tienen que devolver?
- En una bolsa hay 240 caramelos. El 45% son de fresa y el resto son de menta. ¿Cuántos caramelos hay de cada sabor?
- Un tren tiene 150 plazas. El 12 % de las plazas son en coche-cama y el resto en asiento. ¿Qué porcentaje de las plazas son en asiento? ¿Cuántas plazas hay de cada tipo?

4. Resuelve.

 Mario tiene 350 fotos de paisajes. El 24 % son de playas, el 36 % de montañas y el resto de bosques. ¿Cuántas fotos tiene de cada tipo?

- En un concurso de disfraces, el ayuntamiento ha destinado 450 € para premios. El primer premio es el 62% del total, el segundo premio es el 28%, y el tercer premio, el resto. ¿Cuánto dinero se destina a cada uno de los premios?
- Carmen ha hecho un pedido de 250 refrescos para su bar. El 36% de los refrescos eran de cola. Del resto, la mitad eran de naranja y la otra mitad de limón. ¿Qué porcentaje de los refrescos eran de naranja? ¿Cuántos refrescos pidió de cada sabor?


5. Calcula cuál es el porcentaje en cada caso.

HAZLO ASÍ

¿Qué porcentaje de los alumnos van en ruta?

• En una clase de 24 alumnos, 6 van en ruta.

Construye una tabla de proporcionalidad y calcula.

De cada 100 alumnos. 25 van en ruta. Van en ruta el 25% de los alumnos.

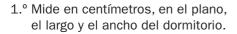
- En una huerta de 38 árboles, 19 son manzanos. ¿Qué porcentaje de los árboles son manzanos?
- En una sala de un museo hay 85 insectos. De ellos 17 son mariposas. ¿Qué porcentaje de los insectos son mariposas?

6. RAZONAMIENTO. Piensa y contesta.

Explica tu respuesta.

En una clase, el 25% de los alumnos tienen un perro. el 12% tienen una pecera con peces, el 3% tienen una tortuga y el 65 % no tienen ninguna mascota. ¿Puedes asegurar que al menos uno de los alumnos de la clase tiene más de una mascota?

Escalas: planos y mapas


Terraza

Salón

Este es el plano del apartamento de Rocío. Está hecho a escala 1:150. ¿Cuáles son las medidas reales del dormitorio?

La escala del plano es 1:150. Esto significa que 1 cm del plano representa 150 cm en la realidad.

Para calcular las medidas reales del dormitorio, sigue estos pasos:

Largo en el plano ▶ 2,6 cm Ancho en el plano ▶ 1,4 cm

Dormitorio

Baño

Largo real ▶ 2,6 cm
$$\times$$
 150 = 390 cm = 3,9 m
Ancho real ▶ 1,4 cm \times 150 = 210 cm = 2,1 m

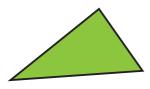
Cocina

El dormitorio mide 3,9 m de largo y 2,1 m de ancho.

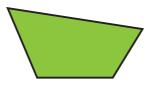
La escala de un plano o un mapa indica la relación que hay entre las medidas del plano o del mapa y las medidas reales.

- 1. Mide con una regla en el plano de arriba y calcula las siguientes medidas reales.
 - El largo de la cocina.
 - El ancho del baño.

- El largo y el ancho de la terraza.
- El largo y el ancho del salón.
- 2. Explica qué significan estas escalas.


Escala 1:50

Escala 1:90


Escala 1:100

Escala 1:120


- 3. Escribe a qué escala está dibujado cada plano.
 - Plano A: 1 cm del plano representa 3 cm de la realidad.
 - Plano B: 1 cm del plano representa 30 cm de la realidad.
 - Plano C: 1 cm del plano representa 3 m de la realidad.
- 4. Observa la escala a la que está hecho el plano de cada jardín, mide y calcula el perímetro real.

Escala 1:80

Escala 1:140

Escala 1:200

5. Observa la escala a la que está hecho este mapa, mide y calcula la distancia real que recorre un avión en cada trayecto.

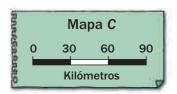
APRENDE

En el mapa la escala es gráfica. En ella, cada barrita mide 1 cm.

La escala de este mapa indica que 1 cm en el mapa representa 175 km en la realidad.

En este mapa se han marcado varios trayectos que recorre un avión en línea recta entre ciudades de España.

Ejemplo: De Madrid a Sevilla. Distancia en el plano: 2,2 cm Distancia real: $2,2 \times 175 = 385$ km



- De Barcelona a Madrid.
- De A Coruña a Zaragoza, pasando por Madrid.
- De Bilbao a Valencia.
- De Badajoz a Sevilla, ida y vuelta.

6. Observa cada escala gráfica y contesta.

- ¿Cuántos kilómetros en la realidad representa 1 cm en cada mapa?
- ¿Qué distancia real representan 5 cm en cada mapa?

7. Piensa y contesta.

- ¿Por qué crees que en los mapas se utiliza la escala gráfica en lugar de la escala numérica de los planos?
- ¿Cómo expresarías esta escala con números?

1 cm en el mapa son ...

2 km = ... cm

Escala 1:...

CÁLCULO MENTAL

Estima restas aproximando los números decimales a las unidades

$$5,2-2,7 \xrightarrow{5,2 \triangleright 5} 5 - 3 = 2$$

$$4,6-2$$
 $7,7-4,8$

$$9,1-7$$

$$9,1-7$$
 $8,2-6,3$

Actividades

1. Completa y pon un ejemplo.

Son proporcionales

- El número de barras de pan que compro y ...
- El número de jugadores de un equipo de fútbol y ...

No son proporcionales

- El tiempo que dura un programa de televisión y ...
- El número de goles que mete un equipo de fútbol en un partido y ...

ESTUDIO EFICAZ. Explica cómo calculas los números de cada fila de una tabla de proporcionalidad y completa.

1	3	4			15	
		32	64	80		160

3. Resuelve. Después, contesta.

En una tienda han vendido 80 yogures.

El 20% de los yogures eran de fresa. ¿Cuántos yogures de fresa han vendido?

De los 80 yogures, 20 eran de chocolate. ¿Qué porcentaje de los yogures vendidos eran de chocolate?

- ¿Qué porcentaje de yogures vendidos es mayor: el de fresa o el de chocolate?
- ¿De qué sabor se han vendido más yogures: de fresa o de chocolate?

4. ¿Qué regalo prefieres en cada caso? Lee y resuelve.

Al comprar pistachos te dan, además, uno de estos regalos:

- 10 g. El 10 % de tu compra.
- Compras 500 g de pistachos.
- Compras 50 g de pistachos.

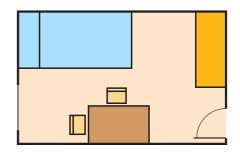
5. Piensa y contesta.

Félix ha hecho 3 fotocopias de un dibujo, cada una a un tamaño distinto:

Fotocopia *A* ► Al 60 % del original.

Fotocopia *B* ► Al 100 % del original.

Fotocopia C ► Al 150% del original.


¿Cómo es cada fotocopia respecto del original: mayor, menor o igual?

6. Mide con una regla y calcula cuánto mide cada barra en la realidad.

Escala 1:300

7. Calcula el largo y el ancho reales de los siguientes muebles, sabiendo que el plano está a escala 1:60.

- La cama.
- La mesa.
- El armario.
- 8. Observa la escala y calcula.

Jorge va por la mañana de A a B. Por la tarde vuelve de B a A pasando por C. ¿Cuántos kilómetros recorre por la tarde más que por la mañana?

9. Construye una tabla de proporcionalidad y contesta.

- Irene ha hecho 6 pulseras iguales con 48 piedrecitas de colores.
 ¿Cuántas piedrecitas necesita Irene para hacer 10 pulseras iguales?
 ¿Y para hacer 15 pulseras?
 ¿Cuántas pulseras iguales puede hacer Irene con 72 piedrecitas?
 ¿Y con 128 piedrecitas?
- Una máquina de una fábrica de conservas envasa 300 botes cada 20 minutos. ¿Cuántos botes envasará en 30 minutos? ¿Y en una hora? ¿Cuánto tiempo tardará la máquina en envasar 135 botes? ¿Y en envasar 705 botes?

10. Resuelve.

- En un jardín se han plantado 250 flores.
 El 46% de las flores son claveles chinos,
 el 28% son petunias y el 26% son
 pensamientos. ¿Cuántas flores se han
 plantado de cada tipo?
 Una semana después se habían
 estropeado el 10% de las petunias.
 ¿Cuántas petunias se han estropeado?
- Javier tiene un puesto de bocadillos.
 Hoy ha preparado 48 bocadillos y ya ha vendido 12. ¿Qué porcentaje de los bocadillos preparados ha vendido ya?
- De los 60 músicos de una banda,
 30 tocan el tambor y 12 la trompeta.
 ¿Qué porcentaje de los músicos tocan el tambor? ¿Y la trompeta?

ERES CAPAZ DE... Ajustar recetas para distinto número de personas

Ángela quiere hacer espaguetis con tomate para comer y mira en la receta las cantidades que necesita de cada ingrediente.

Se da cuenta de un problema: la receta está preparada para 5 personas.

¿Qué cantidad de cada ingrediente necesita Ángela si quiere preparar el plato solo para 2 personas?

¿Y si lo quiere hacer para 6 personas?

Completa la tabla averiguando la cantidad de cada ingrediente que necesita según el número de personas que vayan a comer.

	Cantidad de cada ingrediente			
Ingrediente	Para 5	Para 2	Para 6	
ingrediente	personas	personas	personas	
Espaguetis				
Chorizo				
Queso				
Tomate				

Solución de problemas

Resolver un problema empezando por el final

En algunos problemas, para resolverlos, tenemos que comenzar utilizando los datos del final e ir avanzando hacia atrás. Resuelve así estos problemas.

María estuvo mirando el precio de un televisor en enero. Decidió no comprarlo y volvió a la tienda en febrero. Vio que habían rebajado el precio un 20%. Cuando fue a comprarlo a mitad de marzo, el precio era 30 € menor que en febrero. El televisor le costó 370 €. ¿Cuánto costaba en enero?

Hacemos un esquema y escribimos en él los datos. En los recuadros irán los precios sucesivos.

Date cuenta de que una rebaja del 20% significa que el precio tras la primera rebaja era un 80% del precio inicial.

Avanzamos hacia atrás empezando por el final. Calculamos primero el precio en febrero (370 \in + 30 \in = 400 \in), y después el precio en enero (400 \in : 0,8 = 500 \in).

Solución: En enero, el televisor costaba 500 €.

- 1. Ana corrió el martes la mitad que el lunes, y el miércoles corrió 1,8 km menos que el martes. El miércoles corrió 5 km. ¿Cuántos kilómetros corrió el lunes?
- 2. Maite ha escrito un número. Le ha restado 90 y luego la diferencia la ha dividido entre 7. El resultado final ha sido 20. ¿Qué número ha escrito Maite?
- 3. El lunes se apuntaron a una excursión muchas personas. El miércoles se habían borrado 15 personas de las apuntadas el lunes, y el viernes, al cerrar la lista, quedaban apuntadas el 90% de las personas que había apuntadas el miércoles. Fueron a la excursión 180 personas. ¿Cuántas personas se apuntaron el lunes?
- **4. INVENTA.** Escribe un problema que se pueda resolver empezando por el final.

EJERCICIOS

- 1. Descompón cada número y escribe cómo se lee.
 - 8.93
- 6.7
- **2.304**
- 19.035

2. Expresa con cifras.

- Siete unidades y tres décimas.
- Once unidades y quince centésimas.
- Tres unidades y cuarenta milésimas.
- 3. ESTUDIO EFICAZ. Explica con tus palabras cómo se comparan dos números decimales.
- 4. Ordena de mayor a menor cada grupo.
 - **2.8** 2,9
- 2,954
- 2,96
- 2,961

- 9.314
- 9 9.4 9.134 9.03
- 9.341

5. Calcula.

- 2,75 + 9,884
- 150,06: 1,23
- \bullet 3,4 1,765
- **132:8,25**
- 2.8 × 6.02
- **8.076:12**
- $0,106 \times 1.000$
- 471,9:1.000

6. Calcula.

- $\frac{2}{7} \times \left(\frac{4}{7} \frac{3}{14}\right)$ $\frac{5}{2} \times \frac{4}{3} \frac{6}{4}$
- $7.5 \times 6 : 2.5$ $8 \times (9 1.4 : 2)$

7. Contesta.

- ¿Cuántas bases tiene un triángulo? ¿Y un paralelogramo?
- Si eliges una base de un triángulo, ¿cuántas alturas tiene esa base? ¿Cuántas alturas tiene una base de un paralelogramo?
- 8. Halla la longitud de cada circunferencia.
 - Su radio mide 5 cm.
 - Su diámetro mide 20 cm.

PROBLEMAS

- 9. Luis tiene 12 años y es 5 años mayor que su hermano. Entre los dos tienen 20 años menos que su padre. ¿Cuántos años tienen entre los tres?
- **10.** Pedro ha comprado 6 botes de tomate y un kilo de macarrones que cuesta 2,10 €. Ha pagado con 12 € y le han devuelto 1,50 €. ¿Cuánto le ha costado cada bote de tomate?
- **11.** Jorge ha ido a un vivero a comprar pinos para repoblar. En el vivero hay 1.080 pinos y se venden a 4 € la docena. Jorge quiere comprarlos todos y cuenta con 350 €. ¿Le falta o le sobra dinero? ¿Cuánto?
- **12.** Dos tercios de un grupo de 36 amigos tienen el pelo moreno, dos novenos lo tienen rubio y el resto son calvos. ¿Qué color de pelo es el más común? ¿Cuántos amigos del grupo son calvos?
- **13.** María tiene 4 jarras con 1,5 litros de limonada en cada una. Llena 12 vasos de un tercio de litro cada uno. ¿Cuántos litros de limonada le quedan en las jarras?

14. En una fábrica han envasado 3.960 l de refresco en botes de 0,33 l cada uno. Los han empaquetado en paquetes de 6 y los paquetes en palés de 50 paquetes cada uno. Venden cada palé a 42,50 €. ¿Cuánto dinero vale todo el refresco envasado?

Longitud, capacidad, masa y superficie

Los ríos tienen una enorme importancia para el medio ambiente y para el ser humano. Su agua se utiliza en la agricultura, el consumo humano, la obtención de energía... Muchas ciudades y pueblos están a la orilla de un río.

La cantidad de agua que lleva un río se llama caudal y varía mucho. En la tabla aparecen indicados el caudal medio y la longitud de algunos ríos de España.

	Caudal medio en kl por segundo	Longitud en km
Miño	340	310
Duero	675	895
Tajo	444	1.007
Guadiana	78	818
Guadalquivir	164	657
Ebro	426	910
Júcar	49	498
Segura	26	325

- ¿Cuántos litros son 1 kilolitro (kl)?
 ¿Cuántos litros por segundo tiene
 el caudal medio del río Miño?
- ¿Cuántos metros son 1 kilómetro?
 ¿Cuál es la longitud en metros del río Júcar?
- ¿Qué ríos tienen un caudal medio mayor de 350.000 litros por segundo?
 ¿Cuál es la longitud en metros de cada uno de ellos?

RECUERDA LO QUE SABES

Longitud, capacidad y masa

LONGITUD ► El metro (m) es la unidad principal.

Múltiplos del metro

Submúltiplos del metro

Decámetro (dam) ▶ 1 dam = 10 m

Hectómetro (hm) ▶ 1 hm = 100 m

Kilómetro (km) ▶ 1 km = 1.000 m Decímetro (dm) \triangleright 1 m = 10 dm

Centímetro (cm) ▶ 1 m = 100 cm

Milímetro (mm) \triangleright 1 m = 1.000 mm

CAPACIDAD ► El **litro** (ℓ) es la unidad principal.

Múltiplos del litro

Submúltiplos del litro

Decalitro (dal) \triangleright 1 dal = 10 ℓ

Hectolitro (hl) \triangleright 1 hl = 100 ℓ

▶ 1 kl = 1.000ℓ Kilolitro (kl)

Decilitro (dl) \triangleright 1 ℓ = 10 dl

Centilitro (cl) \triangleright 1 ℓ = 100 cl

Mililitro (ml) \triangleright 1 ℓ = 1.000 ml

MASA ► El kilogramo (kg) es la unidad principal. El gramo (g) es una unidad muy usada.

Múltiplos del gramo

Decagramo (dag) ▶ 1 dag = 10 g

Hectogramo (hg) \triangleright 1 hg = 100 g

 \triangleright 1 kg = 1.000 g Kilogramo (kg)

Submúltiplos del gramo

Decigramo (dg) \triangleright 1 g = 10 dg

Centigramo (cg) \triangleright 1 g = 100 cg

Miligramo (mg) \triangleright 1 g = 1.000 mg

1. Completa.

3 km = ... m

 $2,6 \text{ hm} = \dots \text{ m}$

250 m = ... dam

724 m = ... km

5 m = ... dm

 $7,2 \text{ m} = \dots \text{ cm}$

349 cm = ... m

870 mm = ... m

 $9 \ell = ... cl$

 $6,4 \ell = ... \text{ ml}$

 $7.8 \text{ hI} = ... \ell$

 $1,92 \text{ dal} = ... \ell$

 $4.300 \ell = ... kl$

 $92 \ell = ... dal$

 $120 dl = ... \ell$

 $160 \text{ cl} = \dots \ell$

4,2 dag = ... g

 $0.75 \text{ kg} = \dots \text{ g}$

974 g = ... hg

113 g = ... kg

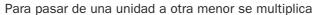
2.8 g = ... dg

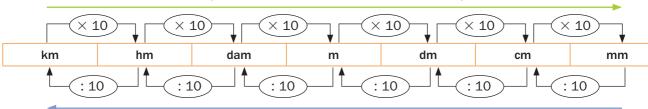
64 g = ... cg

375 mg = ... g

46.9 dg = ... g

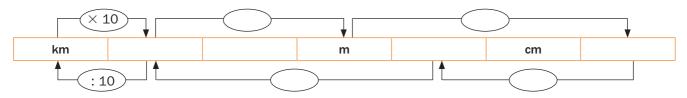
VAS A APRENDER


- A conocer y utilizar las unidades de longitud, capacidad, masa y superficie.
- A realizar estimaciones en distintos contextos.
- A resolver problemas donde aparezcan unidades de medida.


Unidades de longitud. Relaciones

La distancia entre dos ciudades se mide en kilómetros. La anchura de una hoja de papel se mide en centímetros.

Las unidades de longitud forman un sistema decimal. Observa las unidades de longitud y las relaciones entre ellas.



Para pasar de una unidad a otra mayor se divide

En estos ejemplos puedes ver cómo pasar de una unidad a otra.

1. Completa el cuadro en tu cuaderno.

2. Escribe qué operación hay que hacer para pasar de una unidad a otra.

- ► Ejemplos: De hm a cm ► Multiplicar por 10.000.
- De dam a km ▶ Dividir entre 100.

De dm a km

De km a cm

De dam a mm

De hm a dm

De cm a dam

De mm a dm

3. Completa.

- 0.035 km = ... cm
- 620 mm = ... dm
- 4,376 hm = ... cm
- $1,26 \text{ dm} = \dots \text{ mm}$
- $0.015 \, dam = ... \, mm$
- 0.36 hm = ... km

- 9.876 cm = ... hm
- 5.3 dam = ... cm
- 21.034 dm = ... dam

4. Expresa en la unidad indicada.

▶ Ejemplo: 0,3 km y 250 mm en m ▶ 0,3 km y 250 mm = 300 m + 0,25 m = 300,25 m

En m

3 hm y 40 mm

9 dam, 1 m y 8 cm

0,12 km, 7 dam y 75 dm

En mm

512 m, 96 cm y 520 mm

En dam

2,5 hm y 975 dm

3 dam, 2 m y 16 cm

0,002 hm y 7 dm

4,5 dam, 23 dm y 5 mm

0,1 m, 8 dm y 26 cm

En dm

1,2 dam y 4 mm

4 hm, 3 m y 78 mm

0,001 km, 25 cm y 690 mm

5. Expresa todas las medidas en la misma unidad y ordénalas de menor a mayor.

49,95 dm

0.05 hm

5,01 m

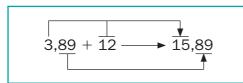
4.975 mm

502 cm

0.51 dam

6. Escribe dos objetos o distancias cuya longitud expresarías con cada unidad indicada.

- Metro
- Centímetro
- Kilómetro
- Milímetro


7. Resuelve.

- En un hormiguero hay 4 millones de hormigas. Cada una mide 3 mm de largo. Si se colocasen todas en fila, sin dejar ningún espacio entre ellas, ¿la longitud de la fila sería mayor o menor de 10 km?
- Un herrero tiene 5 dam de cinta metálica en un rollo. La ha cortado en trozos de 25 cm. ¿Cuántos ha obtenido?
- Un ciclista entrena en una pista cubierta de 4 hm de largo. Cada día recorre 15 km y 600 m. ¿Cuántas vueltas da a la pista?
- Al dar un paso, Luis recorre 82 cm. De casa al colegio da 800 pasos. ¿Qué distancia en kilómetros recorre?

CÁLCULO MENTAL

Suma un número decimal y un número natural

4,9 + 8

9 + 6,75

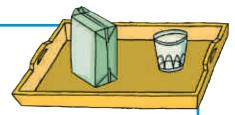
11,5+7

5,6+7

5 + 8,62

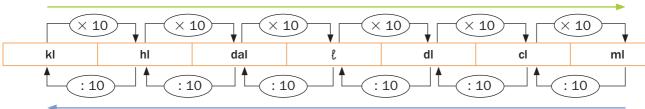
44,86 + 3

14,2+3


7 + 13,98

19 + 6.7

Unidades de capacidad. Relaciones


El tetrabrik tiene 1 litro de leche.

En el vaso caben 20 centilitros de leche.

Las unidades de capacidad también forman un sistema decimal. Observa las unidades de capacidad y las relaciones entre ellas.

Para pasar de una unidad a otra menor se multiplica

Para pasar de una unidad a otra mayor se divide

En estos ejemplos puedes ver cómo pasar de una unidad a otra.

1. Escribe qué operación hay que hacer para pasar de una unidad a otra.

- De hl a dl ► Multiplicar por ...
- De kl a cl
- De dal a ml

- De ml a dal ► Dividir entre ...
- De ml a hl
- De dl a kl

2. Completa.

$$7.200 \text{ cl} = \dots \text{ dl}$$

$$0.8 \, dal = ... \, ml$$

$$134 dl = ... hl$$

$$0.09 \, dal = \dots \, cl$$

$$735 cl = ... dal$$

$$0.95 \, dl = \dots \, cl$$

$$1.406 \text{ ml} = \dots \text{dl}$$

$$0.092 \text{ kl} = \dots \text{ dl}$$

$$3.098 \text{ ml} = \dots \text{ cl}$$

3. Expresa en la unidad indicada.

Enℓ	2,6 hl y 4 dal	0,7 kl, 9 dal y 75 ml	12 dal, 26 cl y 540 ml
En ml	3 dal y 79 cl	5 ℓ, 36 dl y 7 cl	0,001 kl, 0,07 hl y 4ℓ
En hl	0,4 kl y 28 dal	9 dal, 1 ℓ y 125 cl	1,4 ℓ, 520 dl y 7.800 ml

4. Expresa todas las capacidades en la misma unidad y ordénalas de mayor a menor.

5. Escribe dos recipientes cuya capacidad pueda ser la indicada.

- Más de 1 cl y menos de 1 ℓ.
- Más de 1 l y menos de 1 dal.

- Más de 1 dal y menos de 1 kl.
- Más de 1 kl.

6. Resuelve.

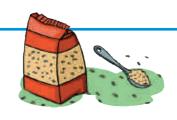
- Una cafetería consumió los tres primeros meses del año 31 kl y 9 hl de agua. ¿Cuántos litros gastó en marzo si en los dos primeros meses había gastado en total 21 kl y 3 hl?
- María tiene que tomar 5 ml de jarabe cada día.
 El frasco de jarabe contiene 15 cl.
 ¿Para cuántos días tiene jarabe María?
 ¿Para cuántos días tendría jarabe
 si tomase 0,1 dl al día?
- En una bodega tienen un tonel lleno de vino.
 Su capacidad es de 6 hl. ¿Cuántas botellas de 750 ml pueden llenar con el contenido del tonel?
 ¿Y botellas de 1,5 l?

- Para hacer un batido, Carlos ha mezclado 2 tazas de zumo de naranja de 250 ml cada una y 1,5 litros de leche. Lo sirve después en vasos de 50 cl. ¿Cuántos vasos obtiene?
- Carlos tiene en su restaurante 3 garrafas de 5 litros de aceite. Ha llenado 2 botellas de 1 litro y medio cada una y el resto lo ha puesto en aceiteras de 300 ml cada una. ¿Cuántas aceiteras ha llenado?

7. RAZONAMIENTO. Completa.

$$5 \text{ dal} + \dots \ell = 0,54 \text{ hl}$$

$$170 \text{ cl} + \dots \text{ ml} = 30 \text{ dl}$$


$$0.005 \text{ kl} = 0.02 \text{ hl} + \dots \text{ cl}$$

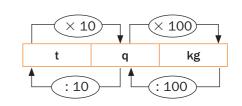
$$0.9 \text{ hl} = 7.5 \text{ dal} + \dots \text{ dl}$$


Unidades de masa. Relaciones

El paquete tiene 1 kilogramo de arroz y la cuchara tiene 10 gramos.

Las unidades de masa también forman un sistema decimal. Observa las unidades de masa y las relaciones entre ellas.

Para pasar de una unidad a otra menor se multiplica



Para pasar de una unidad a otra mayor se divide

Otras unidades comunes son la tonelada (t) y el quintal (q).

1 tonelada =
$$1.000 \text{ kg} > 1 \text{ t} = 1.000 \text{ kg}$$

1 tonelada =
$$10 \, q > 1 \, t = 10 \, q$$

Fíjate en cómo pasamos de una unidad a otra en estos ejemplos.

■ De dg a mg
$$\blacktriangleright$$
 dg \times 10 cg \times 10 mg \times 10 o,5 dg = 0,5 \times 100 = 50 mg

● De dg a hg
$$\blacktriangleright$$
 hg $4:10$ dag $4:10$ g $4:10$ dg $4:1$

1. Explica cómo pasar de una unidad a otra.

De hg a cg De

De dag a kg

De kg a t

De cg a dag

De q a hg

2. Completa.

$$2.8 \text{ hg} = ... \text{ cg}$$

$$0.15 \text{ kg} = \dots \text{ g}$$

$$25.000\;\text{cg}=...\;\text{hg}$$

$$0.9 \, dag = ... \, dg$$

$$1.429~\text{mg} = \dots \, \text{dg}$$

$$80 \text{ kg} = ... \text{ q}$$

$$124~\text{cg} = ...~\text{kg}$$

$$0.9 \text{ kg} = \dots \text{ dag}$$

3. Expresa en la unidad indicada en cada caso.

4. Expresa en la misma unidad y ordena.

+	De menor a mayor			
	34 dag	3.500 dg		
	0,33 kg	3,45 hg		

De mayor a menor 12,5 dg 0,7 dag 8.200 mg 2,1 g 425 cg

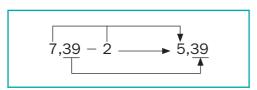
Elige la unidad más adecuada en cada caso: gramo, kilogramo o tonelada.

- El peso de un cohete espacial.
- El peso de un alumno de 6.°.
- El peso de un yogur.

- El peso de la pizarra.
- El peso de un edificio.
- El peso de una goma de borrar.

6. Observa y resuelve.

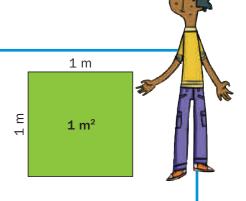
- ¿Cuántos kilos pesan mil monedas de 1 céntimo?
- ¿Cuántos kilos pesan mil monedas de 5 céntimos más que mil monedas de 2 céntimos?
- ¿Cuántas monedas de 1 céntimo se pueden acuñar con 4,6 t de metal?
- ¿Cuántas monedas de 5 céntimos se pueden acuñar con 3 q y 92 kg de metal?


7. Resuelve.

- Un camión puede llevar una carga máxima de 5 t. Ha cargado en el bosque 7 troncos de 4 q y 85 kg cada uno. ¿Cuántos kilos pesan los troncos? ¿Cuántos quintales más podría transportar el camión?
- Un yogur contiene 1,5 mg de vitamina *E* añadida.
 - Para producir 1.000 yogures, ¿cuántos gramos de vitamina E se necesitan?
 - Con 30 g de vitamina E, ¿cuántos yogures se pueden producir?
- Mario ha preparado 20 panecillos iguales con 4,8 hg de harina. ¿Cuántos gramos de harina hay en cada panecillo?

CÁLCULO MENTAL

Resta un número natural a un número decimal


$$50,14 - 3$$

Unidades de superficie

Con las unidades de superficie expresamos el área de una figura. La unidad principal de superficie es el **metro cuadrado** (m²).

El metro cuadrado es la superficie de un cuadrado de 1 m de lado.

Para medir superficies mayores y menores que el metro cuadrado usamos sus múltiplos y sus submúltiplos.

MÚLTIPLOS DEL METRO CUADRADO

Decámetro cuadrado ▶ dam²

Hectómetro cuadrado ▶ hm²

Kilómetro cuadrado ▶ km²

El dam², el hm² y el km² son la superficie de un cuadrado cuyo lado mide 1 dam, 1 hm y 1 km, respectivamente.

SUBMÚLTIPLOS DEL METRO CUADRADO

Decímetro cuadrado ▶ dm²

Centímetro cuadrado ▶ cm²

Milímetro cuadrado ▶ mm²

El dm², el cm² y el mm² son la superficie de un cuadrado cuyo lado mide 1 dm, 1 cm y 1 mm, respectivamente.

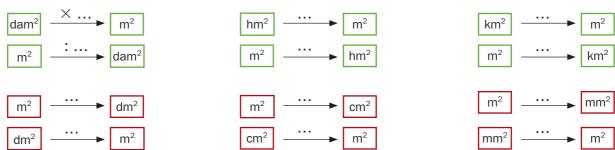
Fíjate en la relación de cada unidad con el metro cuadrado:

$$1 \text{ dam}^2 = 100 \text{ m}^2$$

$$1 \text{ hm}^2 = 10.000 \text{ m}^2$$

$$1 \text{ km}^2 = 1.000.000 \text{ m}^2$$

$$1 \text{ m}^2 = 100 \text{ dm}^2$$


$$1 \text{ m}^2 = 10.000 \text{ cm}^2$$

$$1 \text{ m}^2 = 1.000,000 \text{ mm}^2$$

1. Escribe la frase que define cada unidad de superficie.

▶ Ejemplo: El decámetro cuadrado (dam²) es el área de un cuadrado de 1 dam de lado.

2. Copia y completa.

3. Completa.

► Ejemplos:
$$3 \text{ dam}^2 = 3 \times 100 = 300 \text{ m}^2$$
 $52.000 \text{ m}^2 = 52.000 : 10.000 = 5.2 \text{ hm}^2$

$$7 \text{ km}^2 = \dots \text{ m}^2$$

$$815 \text{ m}^2 = \dots \text{ dam}^2$$

$$3,26 \text{ hm}^2 = \dots \text{ m}^2$$

$$0.9 \text{ hm}^2 = \dots \text{ m}^2$$

$$35.700 \text{ m}^2 = \dots \text{ hm}^2$$

$$289.000 \text{ m}^2 = \dots \text{ km}^2$$

12
$$dam^2 = ... m^2$$

$$9.325.000 \text{ m}^2 = \dots \text{ km}^2$$

$$7,5 \text{ dam}^2 = \dots \text{ m}^2$$

4. Completa.

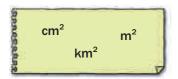
$$4 \text{ m}^2 = \dots \text{ dm}^2$$

$$2.7 \text{ m}^2 = \dots \text{ cm}^2$$

$$0.06 \text{ m}^2 = \dots \text{ mm}^2$$

999
$$dm^2 = ... m^2$$

$$12.800 \text{ cm}^2 = \dots \text{ m}^2$$


$$375.000 \text{ mm}^2 = \dots \text{ m}^2$$

$$80.000 \text{ mm}^2 = \dots \text{ m}^2$$

$$78 \text{ m}^2 = ... \text{ dm}^2$$

$$6.400 \text{ cm}^2 = \dots \text{ m}^2$$

5. Piensa y elige la unidad más adecuada para expresar cada superficie.

- Tu Comunidad Autónoma.
- Un folio.
- Tu clase.

- Una foto.
- Tu provincia.
- El patio del recreo.

6. Resuelve.

- Un ayuntamiento tiene una parcela de 0,5 hm² para instalar fábricas. Van a ocupar 3.700 m² y el resto lo dejarán libre por el momento. ¿Cuántos metros cuadrados quedan libres?
- María ha puesto una alfombra de 375 dm² en una habitación de 6 m². ¿Cuántos metros cuadrados quedan sin alfombra?
- Un bosque de 2 km² está formado por hayas y pinos. Las hayas ocupan 380.000 m².
 ¿Cuántos metros cuadrados ocupan los pinos?

7. Calcula la densidad de población de cada ciudad.

HAZLO ASÍ

Para calcular la densidad de población de una ciudad se divide su número de habitantes entre su superficie expresada en km².

Villalba

Habitantes: 4.340 Superficie: 124 km²

Densidad de población = $\frac{4.340 \text{ hab.}}{124 \text{ km}^2}$ = 35 hab./km²

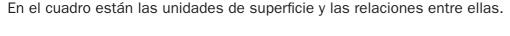
París

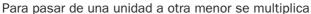
Habitantes: 2.153.550

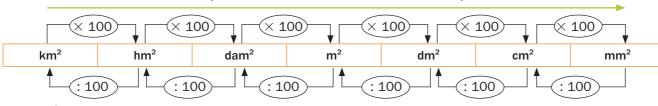
Superficie: 105 km²


Lisboa

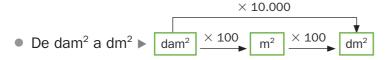
Habitantes: 564.648


Superficie: 8.400 hm²


8. RAZONAMIENTO. Piensa y contesta. Da tres respuestas posibles.


Tres hermanos han recibido una herencia. A Luis le ha correspondido una parcela de 0,04 km² y a Miguel, una parcela de 4,2 hm². La parcela de Pedro tiene más superficie que la de Luis y menos que la de Miguel. ¿Qué superficie puede tener la parcela de Pedro?

Relaciones entre unidades de superficie



Para pasar de una unidad a otra mayor se divide

Fíjate en cómo pasamos de una unidad a otra en estos ejemplos.

 $0.6 \text{ dam}^2 = 0.6 \times 10.000 = 6.000 \text{ dm}^2$

 $3.800 \text{ cm}^2 = 3.800 : 1.000.000 = 0,0038 \text{ dam}^2$

1. Completa.

$$0,005 \text{ hm}^2 = \dots \text{ dam}^2$$

$$8,4 \text{ dm}^2 = \dots \text{ mm}^2$$

$$974 \text{ dm}^2 = ... \text{ dam}^2$$

$$136 \text{ hm}^2 = ... \text{ km}^2$$

12,5 cm
$$^2 = ... dm^2$$

$$1,06 \text{ dam}^2 = \dots \text{ cm}^2$$

$$7.520 \text{ dam}^2 = ... \text{ km}^2$$

$$1,95 \text{ cm}^2 = \dots \text{ mm}^2$$

$$2.300 \text{ dm}^2 = \dots \text{ hm}^2$$

$$0.93 \text{ km}^2 = \dots..dam^2$$

$$714 \text{ mm}^2 = \dots \text{ dm}^2$$

$$28.130 \text{ cm}^2 = \dots \text{ dam}^2$$

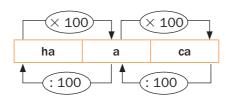
2. Expresa en la unidad indicada.

En hm²	4 km² y 7 hm²	2 dam² y 1.750 m²	1 hm², 15 dam² y 49.000 cm²
En cm ²	3 dm² y 12 cm²	8 m² y 5 dm²	4 dam², 1 dm² y 315 mm²

3. Resuelve.

Paula tiene una tarjeta de cartulina de 0,5 dm². Ha dibujado en ella un rectángulo rojo de 28 cm² y lo ha recortado. ¿Cuántos centímetros cuadrados de cartulina le han sobrado?

Unidades agrarias


Las unidades agrarias se usan para expresar las superficies de fincas, parcelas, bosques... Son la **centiárea** (ca), el **área** (a) y la **hectárea** (ha).

Cada unidad agraria equivale a una unidad de superficie.

$$1 \text{ ca} = 1 \text{ m}^2$$

$$1 a = 1 dam^2$$

$$1 \text{ ha} = 1 \text{ hm}^2$$

Fíjate en cómo pasamos de una unidad a otra en los ejemplos.

• De ha a
$$m^2$$
 • 0,25 ha = 0,25 hm² = 0,25 × 10.000 = 2.500 m²

• De dam² a ca •
$$1,2 \text{ dam}^2 = 1,2 \times 100 = 120 \text{ m}^2 = 120 \text{ ca}$$

1. Expresa en la unidad indicada.

	En m ²	
5 ha	3.400 ca	27 a

	En dam²			
51 ca	0,12 ha	4 a		

En hm²				
9,3 ha	125 a	1.700 ca		

2. Completa.

$$1.3 \text{ m}^2 = \dots \text{ ca}$$

$$34 \text{ dam}^2 = ... \text{ ca}$$

$$0.7 \text{ hm}^2 = \dots \text{ ca}$$

$$5 \text{ dam}^2 = ... \text{ a}$$

$$4.9 \text{ hm}^2 = \dots \text{ a}$$

$$2.000 \text{ m}^2 = \dots \text{ a}$$

$$2.6 \text{ hm}^2 = ... \text{ ha}$$

$$0.04 \text{ km}^2 = \dots \text{ ha}$$

$$15.000 \text{ m}^2 = \dots \text{ ha}$$

3. Resuelve.

- Ana tiene una parcela de 12 ha. Ha sembrado solo un cuarto de la parcela. ¿Cuántos metros cuadrados ha sembrado? ¿Cuántas áreas ha dejado sin sembrar?
- María tiene 5 ha y 80 a de cultivos de secano y 600 a de cultivos de regadío. ¿A qué tipo de cultivo dedica más extensión? ¿Cuántas centiáreas más?

4. RAZONAMIENTO. Observa las cuatro superficies y averigua a qué parque corresponde cada una.

1.811.800 a

389.600 dam²

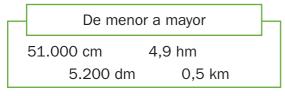
54.252 hm²

40.856 ha

- El parque de menor extensión de los cuatro es Garajonay.
- Doñana tiene mayor extensión que Cabañeros.
- Monfragüe tiene menor extensión que Cabañeros.

Actividades

1. Completa.

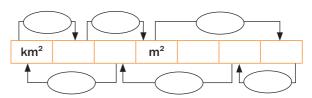

714 cm = dm
3,26 dam = mm
45.000 dm = hm

• 1,9
$$\ell$$
 = ... cl 1.275 ml = ... dl 75 dal = ... kl 0,283 hl = ... cl 6,8 cl = ... ml 7.916 dl = ... dal

2. Expresa en la unidad que se indica.

En m	9 dam y 5 m	8 dm y 15 cm
En m		7 cm y 99 mm
Enℓ	ุ 6 hl y 56 ใ	7 ℓ y 9 dl
LIIT	0,7 kl y 9 dal	80 cl y 925 m
End	9 kg y 1,5 hg	4,2 dag y 5 cg
En g	0,06 t y 2 kg	8 dg y 625 mg

3. Expresa en la misma unidad y ordena como se indica.

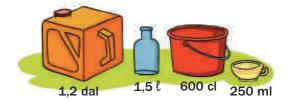

	De mayor a menor		
205 l	2,5 hl	0,025 kl	
25	.100 cl	2.600 dl	

	De menor a mayor			
De menor a mayor			Hayor	
	0,18 t	190 kg	2 q	
	1.850 hg		19.300 dag	

4. Completa.

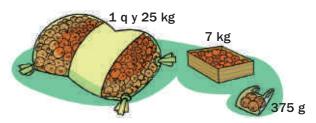
- $5 \text{ km} + \dots \text{ m} = 62 \text{ hm}$
- ... ℓ + 0,03 kl = 1 hl
- $3.980 \text{ kg} \dots \text{ t} = 19.8 \text{ q}$

5. ESTUDIO EFICAZ. Completa el cuadro en tu cuaderno.


6. Completa.

$$0.03 \text{ m}^2 = \dots \text{ cm}^2$$
 $0.007 \text{ km}^2 = \dots \text{ m}^2$ $6.498 \text{ dm}^2 = \dots \text{ dam}^2$ $3.5 \text{ hm}^2 = \dots \text{ cm}^2$ $90.000 \text{ mm}^2 = \dots \text{ m}^2$ $9.200 \text{ cm}^2 = \dots \text{ m}^2$

7. Expresa en metros cuadrados.


7 hm² y 2 dam²
 345 dm² y 4.500 cm²
 0,06 km² y 9 m²
 6 m² y 837.000 mm²

8. Observa y contesta.

- ¿Cuántas botellas se pueden llenar con el agua del bidón? ¿Y con la del cubo?
- ¿Cuántas tazas se pueden llenar con el agua de la botella?
- ¿Cuántos cubos se necesitan para llenar el bidón?

9. Calcula.

- ¿Cuántas cajas completas se pueden llenar con las naranjas del saco?
 ¿Cuántos kilos sobran?
- ¿Cuántas bolsas se pueden llenar con esas naranjas que sobran?

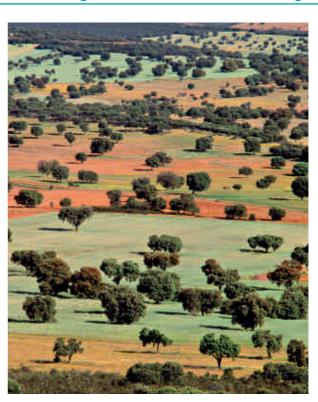
10. Resuelve.

- Carla va a poner el rodapié en una habitación rectangular que mide 6,25 m de largo y 3,5 m de ancho. La habitación tiene una puerta de 120 cm de ancho. ¿Cuántos metros de rodapié necesita?
- Laura ha hecho 6 litros de zumo y ha llenado 4 botellas de 75 cl cada una. El resto lo ha puesto en botellas de 500 ml cada una. ¿Cuántas botellas de 500 ml ha llenado?
- Sonia pesó al nacer 3 kg y 2 hg.
 En la primera semana adelgazó 135 g y en la segunda semana engordó 230 g. ¿Cuántos kilos pesaba Sonia al final de la segunda semana?
- Para hacer un bizcocho, Marina emplea 0,5 kg de harina, 4 huevos de 60 g cada uno y 10 dag de azúcar. Después, parte el bizcocho en 4 raciones iguales.
 ¿Cuántos gramos pesa cada ración?

- El paseo marítimo de una ciudad tiene una longitud de 4 km y 550 m.
 Desde la salida, cada 130 m hay una farola. ¿Cuántas farolas hay en todo el paseo?
- Un frasco contiene 2 dl de jarabe.
 Penélope tiene que tomar 3 cucharadas diarias de 5 ml cada una. ¿Tiene suficiente jarabe para 15 días de tratamiento?
 ¿Cuántos centilitros le faltan o le sobran?
- En 2007 se quemaron en España
 82.027 ha en incendios forestales. En 2005 se quemaron 1.059 km² más que en 2007.
 ¿Cuántas hectáreas se quemaron en 2005?
- Cada uno de los 52 alumnos de 6.º
 ha pintado en un gran mural una zona de
 800 cm² de superficie. ¿Qué superficie en
 metros cuadrados han pintado en total?
- Pilar ha comprado una parcela de 5 ha y 41 a. Le ha costado 12,35 € el metro cuadrado. ¿Cuánto le ha costado en total la parcela?

ERES CAPAZ DE...

El ayuntamiento de Villagrande está pensando en hacer distintos cambios en el municipio los próximos años.

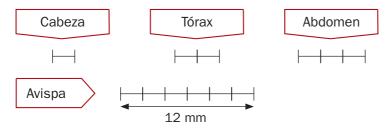

Las extensiones de las zonas que forman el pueblo son las siguientes:

Casco urbano: 250.000 ca.

Pinar: 40 ha. Encinar: 830 a. Pastos: 92 ha.

- El ayuntamiento quiere añadir al casco urbano 50.000 m² quitándolos de la zona de pastos.
 ¿Cuántas hectáreas tendrá cada una de las dos zonas tras el cambio?
- Hace diez años se repoblaron 95.000 m² de pastos y ahora son pinares.
 ¿Cuántas áreas de pinares había antes de la repoblación?

Calcular superficies en un municipio


Solución de problemas

Representar gráficamente la situación

En muchos problemas, representar el enunciado te ayudará a entenderlo mejor. Resuelve estos problemas haciendo un dibujo aproximado del enunciado.

María es bióloga. Ha medido la cabeza, el tórax y el abdomen de una avispa. La longitud del tórax es el doble de la longitud de la cabeza y la longitud del abdomen es el triple de la longitud de la cabeza. La avispa mide 12 mm. ¿Cuánto mide cada parte de su cuerpo?

Representamos la situación con un dibujo. La cabeza la dibujamos con un segmento. Para el resto de partes repetimos ese segmento tantas veces como indica el enunciado. La avispa es la suma de las tres partes.

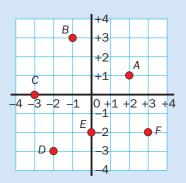
En la avispa hay 6 partes de igual longitud, y en total mide 12 mm. Cada una de las partes mide 12 mm : 6 = 2 mm.

Cabeza \blacktriangleright 1 parte, mide 1 \times 2 mm = 2 mm. Tórax \blacktriangleright 2 partes, mide 2 \times 2 mm = 4 mm. Abdomen \blacktriangleright 3 partes, mide 3 \times 2 mm = 6 mm.

Solución: La cabeza mide 2 mm; el tórax, 4 mm; y el abdomen, 6 mm.

- 1. Marta tiene un vaso, una botella y una jarra. La capacidad de la botella es el triple de la capacidad del vaso y la de la jarra, el doble de la capacidad de la botella. La capacidad total de los tres recipientes es 250 cl. ¿Qué capacidad tiene cada uno?
- 2. Mónica, Paula y Juan son primos. Paula mide el doble que Mónica y Juan mide el doble que Paula. La suma de sus alturas es 315 cm. ¿Cuánto mide cada uno?
- **3.** Pedro compró una nevera en tres plazos. En el segundo plazo pagó el doble que en el primero y en el tercer plazo pagó el doble que en los dos anteriores juntos. La nevera costó 810 €. ¿Cuánto pagó en cada plazo?
- **4. INVENTA.** Escribe un problema, similar a los de esta página, que se resuelva más fácilmente haciendo un dibujo de la situación.

EJERCICIOS


1. Completa los huecos.

•
$$-6 < \square < -4 < \square < -2$$

•
$$+1 > \square > -1 > \square > -3$$

•
$$-3 < -2 < \square < \square < +1$$

2. Escribe las coordenadas cartesianas de cada punto.

3. Averigua si las fracciones de cada pareja son equivalentes.

•
$$\frac{12}{18}$$
 y $\frac{2}{3}$ • $\frac{4}{5}$ y $\frac{5}{4}$ • $\frac{6}{7}$ y $\frac{24}{28}$ • $\frac{15}{20}$ y $\frac{18}{24}$

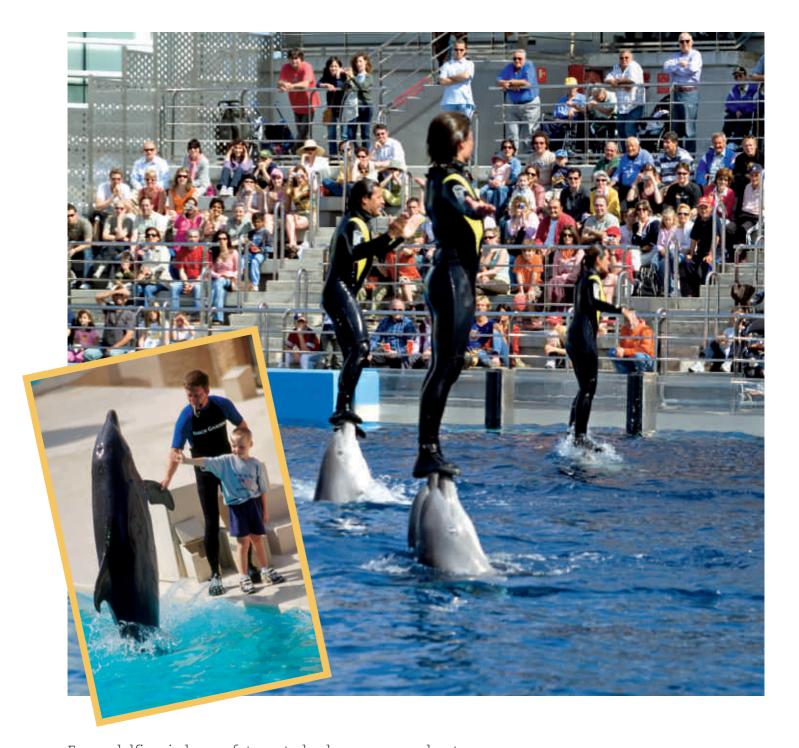
- 4. ESTUDIO EFICAZ. Escribe una suma, una resta, una multiplicación y una división de fracciones. Proponlas a un compañero y comprueba después si las ha hecho bien.
- 5. Completa esta tabla de proporcionalidad.

2	3		7		
8		16		36	40

6. Calcula.

$$\bullet$$
 9,76 $-$ 2,4 $+$ 2,5 \times 1,8

- 7. Halla el cociente de cada división con tres cifras decimales.
 - **3**:7
- 2:90.075:0.6

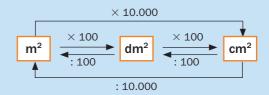

PROBLEMAS

- 8. En un bar han vendido 60 bocadillos y 32 sándwiches. El 15% de los bocadillos y el 25% de los sándwiches eran de atún. ¿Ha vendido más sándwiches de atún o más bocadillos de atún? ¿Cuántos más?
- 9. Ramiro ha hecho una empanada para 4 personas. Ha usado 500 g de harina y 40 g de levadura. Mañana hará una empanada para 6 personas. ¿Cuántos gramos de harina y de levadura necesitará?
- **10.** Luis ha recolectado manzanas. Tiene 40 cajas de 8,5 kg cada una y 6 sacos de 90 kg cada uno. Embolsa las manzanas en bolsas de 2,5 kg cada una. ¿Cuántas bolsas obtiene?

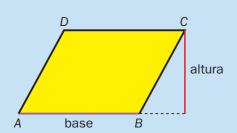
- **11.** En la sesión de tarde de un cine se llenaron dos tercios de las 120 butacas. De los asistentes, un 60 % eran mujeres. ¿Cuántas mujeres fueron a la sesión de tarde? ¿Cuántos hombres?
- **12.** Miguel tenía un cordón de 8,5 m y lo partió en trozos de 0,5 m. Guardó cinco trozos y con el resto hizo un trabajo para el colegio. ¿Cuántos metros de cordón utilizó en el trabajo?
- **13.** Jorge tiene un mapa hecho a escala 1:500.000. Ha medido la distancia entre dos pueblos y ha visto que es 4 cm. ¿Cuál es la distancia real en kilómetros entre ambos pueblos?

Área de figuras planas

En un delfinario hacen fotos a todas las personas al entrar. Después del espectáculo, las personas que lo desean se quedan con una copia de la foto que mide 15 cm de largo y 10 cm de ancho.


- ¿Qué área de papel en centímetros cuadrados tiene cada fotografía?
- En cada hoja de papel de la impresora caben 4 fotografías y sobran 90 cm² de papel. ¿Cuántos centímetros cuadrados tiene cada hoja en total?

RECUERDA LO QUE SABES


Unidades de superficie

- El centímetro cuadrado es la superficie de un cuadrado de 1 cm de lado.
- El decímetro cuadrado es la superficie de un cuadrado de 1 dm de lado.
- El metro cuadrado es la superficie de un cuadrado de 1 m de lado.

 Para pasar de unas unidades a otras operamos como ves en el esquema:

Base y altura de un triángulo y un paralelogramo

- La **base** es uno cualquiera de sus lados. La base *AB* es el segmento morado.
- La altura es el segmento perpendicular a una base o a su prolongación, trazado desde el vértice o uno de los vértices opuestos.
 La altura correspondiente a la base AB trazada desde el vértice C es el segmento rojo.

1. Completa.

$$8 \text{ m}^2 = \dots \text{ dm}^2$$

$$0.36 \text{ m}^2 = \dots \text{ dm}^2$$

$$4 \text{ dm}^2 = \dots \text{ cm}^2$$

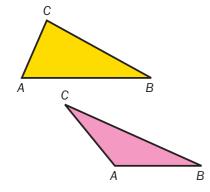
$$3,5 \text{ dm}^2 = \dots \text{ cm}^2$$

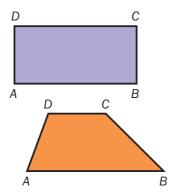
$$9 \text{ m}^2 = \dots \text{ cm}^2$$

$$0.07 \text{ m}^2 = \dots \text{ cm}^2$$

$$600 \text{ dm}^2 = \dots \text{ m}^2$$

$$23.000 \text{ dm}^2 = \dots \text{ m}^2$$


$$850 \text{ cm}^2 = \dots \text{ dm}^2$$


$$7.200 \text{ cm}^2 = \dots \text{ dm}^2$$

$$54.000 \text{ cm}^2 = \dots \text{ m}^2$$

$$9.000 \text{ cm}^2 = \dots \text{ m}^2$$

Calca cada polígono y repasa en rojo todas las bases. Después, traza la altura correspondiente a la base AB desde el vértice C.

VAS A APRENDER

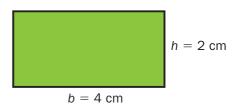
- A obtener el área de cuadrados, rectángulos, rombos, romboides, triángulos, polígonos regulares y círculos.
- A obtener el área de figuras planas compuestas a partir de otras figuras de áreas conocidas.

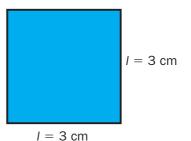
Área del rectángulo y del cuadrado

• ¿Cuál es el área de este rectángulo?

El largo del rectángulo es su base, *b*, y el ancho es su altura, *h*.

Área del rectángulo = largo \times ancho = base \times altura

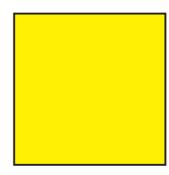

Área =
$$b \times h = 4 \text{ cm} \times 2 \text{ cm} = 8 \text{ cm}^2$$

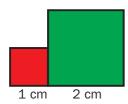


El cuadrado es un tipo especial de rectángulo. Su base y su altura son iguales al lado, *l*.

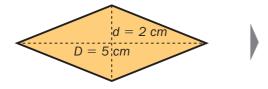
Área cuadrado = $lado \times lado = lado^2$

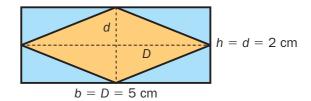
Área =
$$I \times I = I^2 = 3 \text{ cm} \times 3 \text{ cm} = 9 \text{ cm}^2$$




- El área del rectángulo es el producto de su base por su altura.
- El área de un cuadrado es su lado elevado al cuadrado.
- Área del rectángulo = $b \times h$
- Área del cuadrado = I^2
- 1. Mide y calcula el área en centímetros cuadrados de cada figura.

- 2. Haz un croquis y calcula el área en cada caso.
 - Un rectángulo de 30 cm de base y 20 cm de altura.
 - Un cuadrado de 50 cm de lado.
- Una parcela rectangular de 12 m de largo y de ancho, un tercio del largo.
- Un marco de fotos cuadrado de 40 cm de perímetro.
- 3. Halla el área de cada cuadrado. Después, contesta.




- ¿Es el lado del cuadrado mayor el doble del lado del cuadrado menor?
- ¿Es el área del cuadrado mayor el doble del área del cuadrado menor?

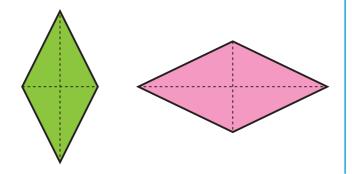
Área del rombo

¿Cuál es el área de este rombo?

Fíjate en que si trazamos paralelas a cada diagonal del rombo por sus vértices, se forma un rectángulo, cuya base es igual a la diagonal mayor del rombo, D, y cuya altura es igual a la diagonal menor, d.

El área del rombo es la mitad del área de ese rectángulo.

$$\text{\'area del rombo} = \frac{ \text{\'area del rect\'angulo}}{2} = \frac{ \text{diagonal mayor} \times \text{diagonal menor}}{2}$$


$$\text{Área} = \frac{D \times d}{2} = \frac{5 \text{ cm} \times 2 \text{ cm}}{2} = 5 \text{ cm}^2$$

El área del rombo es el producto de sus diagonales dividido entre 2.

Área del rombo =
$$\frac{D \times d}{2}$$

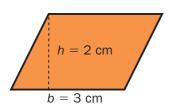
1. Mide y calcula el área.

2. Calcula el área de cada rombo.

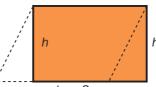
- La diagonal mayor mide 12 cm y la diagonal menor 10 cm.
- La diagonal menor mide 8 cm y la diagonal mayor 15 cm.
- La diagonal mayor y la diagonal menor son iguales y las dos miden 30 cm.
- La diagonal menor mide 6 cm y la diagonal mayor el doble que ella.

CÁLCULO MENTAL

Estima productos aproximando el número decimal a las unidades


$$3.8 \times 7 \xrightarrow{3.8 \, \triangleright \, 4} 4 \times 7 = 28$$

$6,2 \times 5$	$8,1 \times 20$	$2,3 \times 300$
7.8×4	$4,3 \times 70$	$6,1 \times 400$
$3,4 \times 6$	5,6 × 40	8,9 × 500
$9,7 \times 9$	$9,9 \times 50$	7,6 × 600

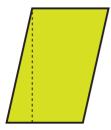

Área del romboide

¿Cuál es el área de este romboide?

Fíjate en que un romboide se puede transformar en un rectángulo. Basta con cortar por la altura h y trasladar el triángulo obtenido al otro lado.

$$h = 2 \text{ cm}$$

El rectángulo obtenido tiene la misma base, b, y altura, h, que el romboide.

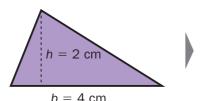

Área del romboide = Área del rectángulo = base \times altura

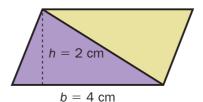
Área =
$$b \times h = 3 \text{ cm} \times 2 \text{ cm} = 6 \text{ cm}^2$$


El área del romboide es el producto de su base por su altura.

Área del romboide = $b \times h$

1. Mide y calcula el área de cada romboide en centímetros cuadrados. Traza su altura cuando sea necesario.


- 2. Calcula el área de cada romboide. Después, contesta.
 - A. Su base mide 8 cm y su altura 6 cm.
- C. Su base mide 10 cm y su altura 4,8 cm.
- ${f B.}$ Su altura mide 4 cm y su base 9 cm.
- **D.** Su altura mide 12,4 cm y su base 5 cm.
- ¿Qué romboides de los anteriores tienen la misma área?
 Dos romboides con distintas bases y alturas, ¿pueden tener la misma área?
- 3. Piensa y contesta. Después, calcula y comprueba.


Martín tiene una parcela con forma de romboide cuya base mide 100 m y cuya altura es 60 m. También tiene un prado romboidal de base 100 m y con el doble de altura que la parcela. El área del prado, ¿es el doble del área de la parcela?

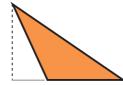
Área del triángulo

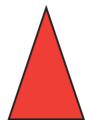
¿Cuál es el área de este triángulo?

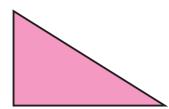
Fíjate en que si trazamos paralelas a dos lados del triángulo se forma un romboide con la misma base, b, y altura, h, que el triángulo de partida.

El área del triángulo es la mitad del área de ese romboide.

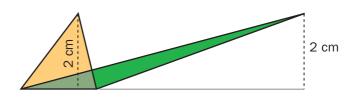

$$\text{\'area del tri\'angulo} = \frac{\text{\'area del romboide}}{2} = \frac{\text{base} \times \text{altura}}{2}$$


$$\text{Área} = \frac{b \times h}{2} = \frac{4 \text{ cm} \times 2 \text{ cm}}{2} = 4 \text{ cm}^2$$

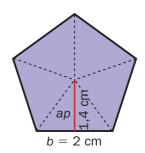

El área del triángulo es el producto de su base por su altura dividido entre 2.


Área del triángulo =
$$\frac{b \times h}{2}$$

Mide y calcula el área de cada triángulo en cm².
 Traza su altura cuando sea necesario.

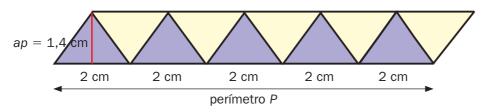


- 2. Calcula el área en cada caso.
 - Un triángulo cuya base mide 15 cm y cuya altura mide 10 cm.
 - Un triángulo cuya base mide 4 cm y cuya altura mide 12 cm más que la base.
 - Una pieza de madera triangular cuya base mide 30 cm y cuya altura mide 15 cm.
 - \bullet Una parcela triangular cuya base mide 150 m y cuya altura mide 70 m.
- 3. RAZONAMIENTO. Observa y contesta.
 - ¿Tienen los dos triángulos la misma base? ¿E igual altura?
 - Tienen los dos triángulos la misma área? ¿Por qué?



Área de polígonos regulares

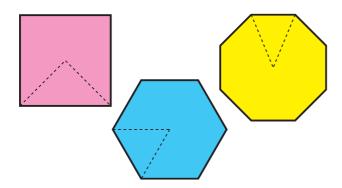
¿Cuál es el área de este polígono regular?


Cualquier polígono regular se puede descomponer en triángulos iguales, uniendo su centro con sus vértices.

La base de cada triángulo es un lado del polígono y la altura es el segmento que une el centro del polígono con el punto medio del lado.
Ese segmento se llama **apotema**, *ap*.

El área del polígono es la suma de las áreas de todos los triángulos que se han formado.

Fíjate en que, si colocamos los triángulos en fila, su área total es la mitad del área de un romboide cuya base es el perímetro del polígono, P, y cuya altura es la apotema, ap.


Área del polígono regular =
$$\frac{\text{Área del romboide}}{2} = \frac{\text{perímetro} \times \text{apotema}}{2}$$

$$Area = \frac{P \times ap}{2} = \frac{10 \text{ cm} \times 1.4 \text{ cm}}{2} = 7 \text{ cm}^2$$

El área de un polígono regular es el producto de su perímetro por su apotema dividido entre 2.

Área del polígono regular =
$$\frac{P \times ap}{2}$$

 Calcula el área de cada polígono regular, sabiendo que el área de cada triángulo marcado es 20 m².

2. Halla el área de cada polígono.

- Un octógono regular cuyo lado mide 18 cm y cuya apotema mide 21,7 cm.
- Un decágono regular cuyo perímetro mide 150 cm y cuya apotema mide 23,1 cm.

Área del círculo

Fíjate en el dibujo.

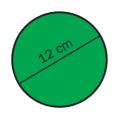
El círculo es similar a un polígono regular con muchísimos lados.

Su perímetro sería la longitud de la circunferencia y su apotema el radio.

¿Cuál es el área de este círculo?

Área de un polígono regular =
$$\frac{\text{perímetro} \times \text{apotema}}{2}$$

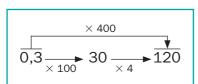
Área del círculo =
$$\frac{\text{longitud de la circunferencia} \times \text{radio}}{2} = \frac{2 \times \pi \times r \times r}{2} = \pi \times r^2$$


Área =
$$\pi \times r^2$$
 = 3,14 \times 1² cm² = 3,14 cm²

El área del círculo es el producto del número π por su radio al cuadrado.

Área del círculo = $\pi \times r^2$

1. Calcula el área y contesta.


- ¿Cuál es el radio del círculo mayor? ¿Es el doble que el radio del menor?
- El área del círculo mayor, ¿es el doble que el área del menor?

2. Calcula el área.

- De un círculo de 5 cm de radio.
- De un círculo de 4 m de diámetro.
- De una ventana circular de 30 cm de radio.
- De una pizza de 14 cm de radio.
- De una plaza de 200 m de diámetro.
- De un cráter circular de 300 m. de diámetro.

CÁLCULO MENTAL

Multiplica un número decimal por decenas y centenas

$$0.4 \times 60$$

 0.7×80

$$0,7 \times 80$$

$$0,5 \times 700$$

$$2,1 \times 500$$

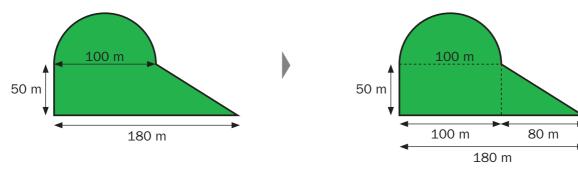
$$5,2 \times 40$$

$$0.06 \times 300$$

$$0.9 \times 30$$

$$7,1 \times 50$$

$$0.08 \times 900$$


$$4,12 \times 400$$

Área de una figura plana

¿Cuál es el área de la figura verde?

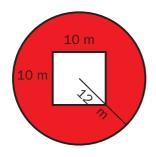
Para hallar el área, dividimos la figura en otras figuras conocidas cuya área seamos capaces de calcular.

En este caso podemos dividirla en un semicírculo, un rectángulo y un triángulo.

El área total de la figura es la suma de las áreas de las tres figuras en las que la hemos descompuesto:

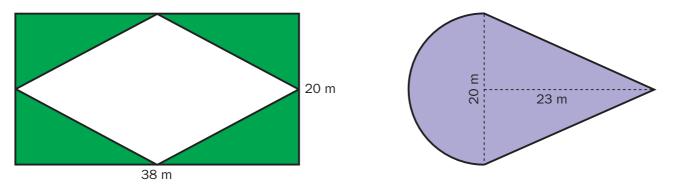
- El semicírculo es la mitad de un círculo de 100 m de diámetro.
- El rectángulo tiene 50 m de altura y 100 m de base.
- El triángulo tiene 80 m de base (180 m 100 m) y 50 m de altura.

Área del semicírculo =
$$\frac{\text{Área del círculo}}{2} = \frac{\pi \times r^2}{2} = \frac{3.14 \times 50^2 \,\text{m}^2}{2} = 3.925 \,\text{m}^2$$

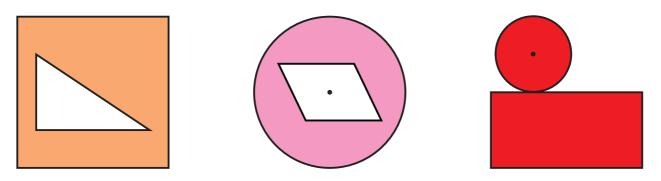

Área del rectángulo = $b \times h = 100 \text{ m} \times 50 \text{ m} = 5.000 \text{ m}^2$

Área del triángulo =
$$\frac{b \times h}{2} = \frac{80 \text{ m} \times 50 \text{ m}}{2} = 2.000 \text{ m}^2$$

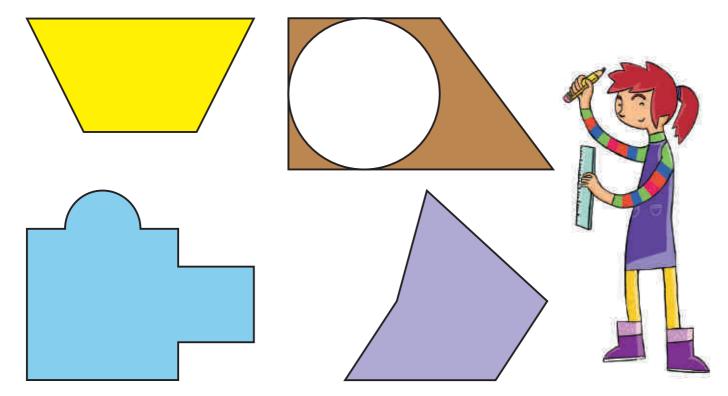
Área de la figura verde = $3.925 \text{ m}^2 + 5.000 \text{ m}^2 + 2.000 \text{ m}^2 = 10.925 \text{ m}^2$


Para calcular el área de una figura plana, hay que descomponerla primero en otras figuras cuyas áreas sepamos calcular y sumar después las áreas de esas figuras.

1. Completa y calcula el área de la zona roja.

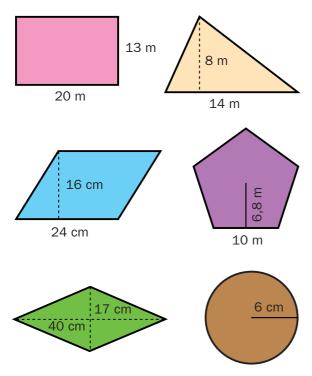


- El área de la zona roja es el área del ... menos el área del ...
- El radio del círculo mide ... m.
 Área del círculo = ...
- El lado del cuadrado mide ... m.
 Área del cuadrado = ...
- Área de la zona roja = ... − ... = ...

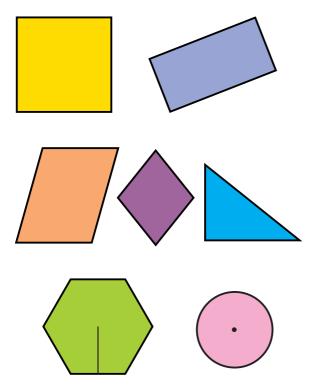

2. Calcula el área de cada figura.

3. Mario ha dibujado estos logotipos para una empresa. Mide y calcula el área de cada uno.

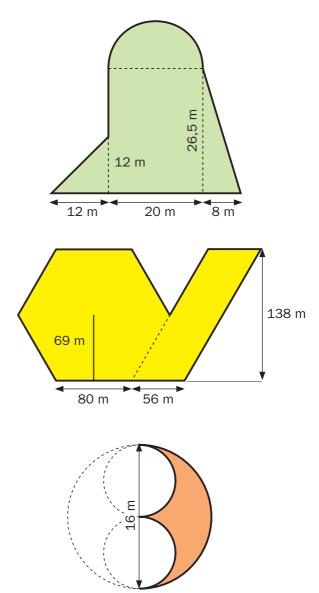
4. Obtén el área de cada pieza metálica. Traza las líneas que creas necesarias, mide y opera.

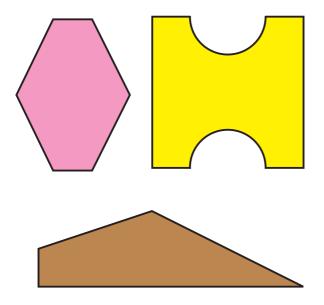


5. RAZONAMIENTO. Dibuja y contesta.

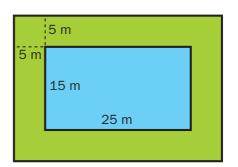

Traza una figura y descomponla en polígonos de área conocida de varias formas. ¿Puedes calcular el área de esa figura plana de varias maneras?

Actividades


- 1. ESTUDIO EFICAZ. Haz una ficha en la que aparezca un dibujo de cada tipo de figura plana y la fórmula para hallar su área.
- 2. Halla el área de cada figura.


3. Halla el área de cada figura midiendo las longitudes que sean necesarias.

- 4. Haz un croquis y halla el área de cada figura.
 - Un romboide cuya base mide 15 cm y cuya altura es 30 cm.
 - Un triángulo cuya base mide 12 cm y cuya altura es 8 cm.
 - Un hexágono regular cuyo perímetro mide
 60 cm y cuya apotema mide 8,7 cm.
 - Un círculo de 40 cm de diámetro.
 - Un cuadrado cuyo perímetro mide 36 cm.
 - Un rectángulo cuyo perímetro mide 20 cm y el lado mayor mide 6 cm.
- 5. Obtén el área de cada jardín. Fíjate bien en qué figuras planas lo componen.



6. Traza las líneas oportunas, mide y halla el área de cada azulejo.

7. Resuelve.

 ¿Qué área de césped hay alrededor de la piscina?

 ¿Cuántos árboles se pueden plantar en una parcela romboidal de 100 m de largo y 40 m de altura si cada árbol necesita un área de 8 m² para poder crecer?

ERES CAPAZ DE...

Planear la reforma de una habitación

Milagros quiere pintar ella misma el salón de su casa. Ha ido a una tienda y ha elegido un color que le ha gustado. Le han dicho que con 1 kilo de esa pintura puede pintar una superficie de $8\ m^2$.

Milagros ha ido a casa y ha medido las paredes, el techo, las puertas y las ventanas del salón. Todas tienen forma rectangular y las dimensiones son las siguientes:

141414141414141

PAREDES

- 2 paredes de 6 m de largo y 3 m de alto
- 2 paredes de 4 m de largo y 3 m de alto

TECHO

• 6 m de largo y 4 m de ancho

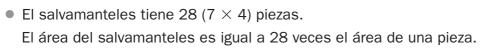
PUERTA

• 1 puerta de 2 m de alto y 1,5 m de ancho

VENTANAS

• 2 ventanas de 1,5 m de alto y 1 m de ancho

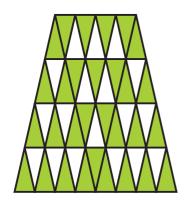
Calcula cuántos metros cuadrados tiene que pintar Milagros y cuántos botes de pintura debe comprar.

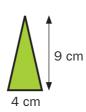

Solución de problemas

Reducir el problema a otro problema conocido

Resuelve los problemas reduciéndolos primero a un problema que sepas resolver.

Juan está diseñando un salvamanteles rectangular de corcho que tiene huecos circulares. ¿Qué área de corcho en cm² tiene el salvamanteles que diseña Juan?

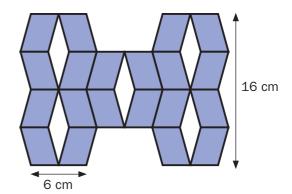

- ▶ Para resolver el problema lo más adecuado es reducirlo primero a un problema que sabemos hacer: calcular el área de cada una de las piezas cuadradas que componen el salvamanteles.
 - El área de cada pieza es igual al área del cuadrado menos el área del hueco circular.
 - Área del cuadrado = $I^2 = 6^2$ cm² = 36 cm²
 - Área del círculo = $\pi \times r^2 = \pi \times 2^2$ cm² = 12.56 cm²
 - Área de una pieza = 36 cm² 12.56 cm² = 23.44 cm²



- Área del salvamanteles = $28 \times 23.44 \text{ cm}^2 = 656.32 \text{ cm}^2$

Solución: El salvamanteles que diseña Juan tiene 656,32 cm² de corcho.

1. Manuela ha hecho una alfombra cosiendo triángulos de tela iguales. ¿Cuál es el área de la parte verde?


2. Pilar ha hecho un diseño uniendo romboides iguales.

¿Cuál es el área de la zona morada?

2 cm

6 cm

6 cm

3. INVENTA. Escribe un problema similar a los de esta página que pueda resolverse reduciéndolo a otro conocido.

EJERCICIOS

- 1. Descompón estos números.
 - 5.003.712
- 3.770.908
- **81.104.670**
- 70.067.103
- 197.051.030
- 702.160.007
- 2. Escribe el valor de posición de las cifras 7 en cada número.
 - 7.501.713

70.070.815

701.207.084

- 3. Escribe con cifras.
 - Ochenta millones once mil treinta y dos.
 - Ciento seis millones doscientos tres mil ochocientos veinticuatro.
 - Siete cuartos.
 - Tres dieciseisavos.
 - Quince unidades y doce milésimas.
 - Siete unidades y cuatro centésimas.
 - Sesenta y tres coma doce.
- 4. Escribe cómo se lee cada número.
 - 8.103.026 40.020.037 130.800.470
 - $\frac{6}{9}$ $\frac{15}{23}$

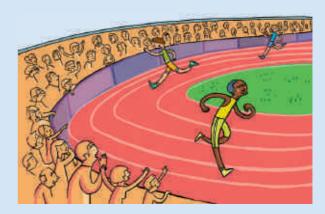
 $\frac{17}{8}$

9 5

 $\frac{8}{40}$

- **13.25**
- 0,025
- 8.9

4,103


- 5. ESTUDIO EFICAZ. Escribe una serie de números y otra serie proporcional a ella. Explica cómo lo has hecho y cómo obtener la primera a partir de la segunda.
- 6. Ordena de menor a mayor cada grupo.
 - 23.675.014 30.205.126 23.700.01623.680.987 24.013.568
 - $\frac{2}{5}$
- $\frac{8}{10}$
- 9 6
- $\frac{14}{15}$
- 28,0929,128,86
- 27,99

30,3

- 7. Completa.
 - 16 km = ... dam
- $4.300 \text{ cm} = \dots \text{ m}$
- 4,5 mm = ... dm
- $0,56 \text{ hm} = \dots \text{ m}$
- $1,36 \ell = ... ml$
- 5.800 dl = ... hl
- $6.134 \text{ cl} = \dots \ell$
- $4.75 \, dal = \dots \, dl$
- 3,06 t = ... kg
- $9,120 \text{ kg} = \dots \text{ g}$
- $9,15 \text{ kg} = \dots \text{ hg}$
- $0.095 \text{ hg} = \dots \text{ cg}$

PROBLEMAS

8. La longitud de una maratón son 42 km, 1 hm y 95 m. La parte final de una maratón consistió en correr en un estadio 7 vueltas a una pista de 400 m de longitud. ¿Qué distancia se había corrido antes de llegar al estadio?

- 9. De los 300 huéspedes de un hotel, dos quintos son franceses, un 15% son alemanes y el resto son de otros países. ¿Cuántos huéspedes del hotel no son ni franceses ni alemanes?
- **10.** En una fábrica se envasan 1.500 kg de aceitunas en 6 horas. ¿Cuánto tiempo se tardará en envasar 2.500 kg? ¿Cuántos kg se envasarán en 8 horas?
- 11. Lola compra un pantalón por 50 €.Al ir a pagar en caja le dicen que le rebajan un 10%. Después, al precio rebajado le añaden el 16% de IVA. ¿Cuánto paga Lola por el pantalón?

Tratamiento de la información

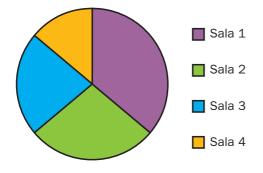
Gráficos de sectores

Se ha hecho un estudio sobre las causas de 1.080 incendios forestales. Los datos se han representado en un diagrama de sectores.

- ¿Cuál fue la causa de incendio más común? Fueron los descuidos, ya que es el mayor sector circular en el gráfico.
- ¿Hubo más incendios intencionados o por fenómenos naturales?
 Hubo más por fenómenos naturales; su correspondiente sector circular es mayor que el de los intencionados.
- ¿Cuántos incendios forestales hubo por descuidos?
 - 1°. Hallamos los incendios que representa cada grado del gráfico.

$$\frac{\text{Número de incendios}}{\text{Grados del círculo}} = \frac{1.080}{360} = 3$$
 Cada grado representa 3 incendios.

2°. Medimos los grados del sector rosa, el de los descuidos, y calculamos el número de incendios multiplicando los grados por 3.


El sector mide 180° \blacktriangleright Representa 180 \times 3 = 540 incendios.

Hubo 540 incendios forestales por descuidos.

En un gráfico de sectores representamos los datos con sectores circulares.

1. Observa el gráfico de sectores y contesta.

A una sesión de un cine con 4 salas fueron 720 espectadores en total.

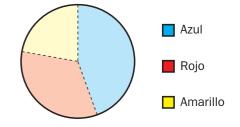
- ¿En qué sala hubo más espectadores? ¿Y menos?
- ¿Hubo menos espectadores en la sala 2 o en la sala 3?
- ¿Cuántos espectadores hubo en cada una de las salas?

2. Lee la información y represéntala en un gráfico de sectores.

Para decidir el color de un envase de un nuevo producto de perfumería se hizo una encuesta a 180 personas sobre el color que preferían y se obtuvieron estos resultados:

Color	Azul	Rojo	Amarillo
Número de personas	80	60	40

- 1°. Suma todos los datos: 80 + 60 + 40 = 180
- 2°. Calcula los grados que corresponden a cada persona de la encuesta:


Grados del círculo
Número de personas = $\frac{360}{180}$ = 2 ▶ A cada persona le corresponden 2 grados.

3°. Calcula los grados del sector circular correspondiente a cada color.

Azul \rangle 80 \times 2° = 160° \triangleright Un sector de 160° será de color azul.

Amarillo > ... × ... = ... ▶ Un sector de ...

4.º Traza una circunferencia y con un transportador y una regla, dibuja el sector circular correspondiente a cada color.

3. Representa en un gráfico de sectores la información de la tabla.

En una fiesta de disfraces anotaron de qué se disfrazaron los 60 asistentes.

Disfraz	Vampiro	Animal	Superhéroe	Astronauta
Número de personas	30	12	10	8

4. Lee y representa la información en un gráfico de sectores.

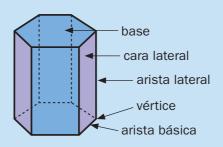
En un hotel hay alojadas 120 personas de países de cuatro continentes. Se distribuyen de la siguiente forma:

- 80 son de países de Europa.
- 15 son de países de África.
- 20 son de países de América.
- 5 son de países de Asia.

Cuerpos geométricos. Volumen

Un balón es un cuerpo geométrico formado por polígonos de cuero unidos entre sí. Al inflarlo, se hincha y adopta una forma esférica.

En el balón desinflado hay 12 pentágonos y 20 hexágonos unidos por sus lados, de forma que cada pentágono está rodeado por completo de hexágonos.

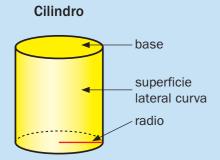

- ¿Cuántas caras tiene el balón de fútbol? ¿Son todos los polígonos iguales?
- Cada pentágono, ¿con cuántos hexágonos comparte lados?
- Cada lado de los polígonos que forman el balón, ¿a cuántos polígonos pertenece?
- ¿A cuántos polígonos pertenece cada vértice?

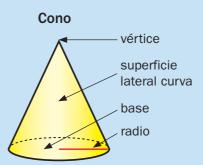
RECUERDA LO QUE SABES

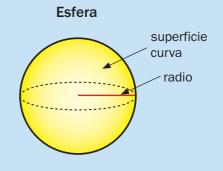
Prismas y pirámides

Los prismas y pirámides son cuerpos geométricos cuyas caras son todas polígonos. Los prismas tienen dos caras paralelas e iguales, llamadas bases, y el resto de sus caras son paralelogramos. Las pirámides tienen una base y el resto de caras son triángulos.

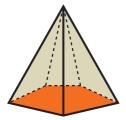
Prisma hexagonal

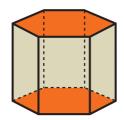


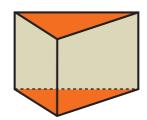

Pirámide hexagonal



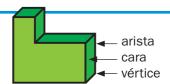
Cuerpos redondos


Los cuerpos redondos son cuerpos geométricos que tienen superficies curvas.





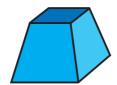
1. Clasifica cada cuerpo en prisma o pirámide y escribe cuántas caras, vértices y aristas tiene.


- 2. ¿Qué oraciones son erróneas? Explica por qué.
 - Todos los cuerpos redondos tienen vértices.
 - Un cilindro tiene dos bases que son polígonos iguales.
 - La base de una esfera es un círculo.
 - Un cono tiene un único vértice.

VAS A APRENDER

- A reconocer poliedros y sus elementos.
- A utilizar la relación entre volumen y capacidad.
- Cómo calcular el volumen de un cuerpo con un cubo unidad.
- A conocer y utilizar las unidades de volumen y a pasar de unas a otras.
- A hallar el volumen de ortoedros y cubos.

Poliedros. Poliedros regulares


Los poliedros son cuerpos geométricos cuyas caras son todas polígonos. Los elementos de un poliedro son caras, aristas y vértices.

Ya conoces dos tipos de poliedros: los prismas y las pirámides, pero hay otros poliedros, como el cuerpo azul y el cuerpo amarillo.

Los poliedros regulares son aquellos cuyas caras son todas polígonos regulares iguales y coincide el mismo número de ellas en cada vértice. Existen solo cinco poliedros regulares.

4 caras que son triángulos regulares

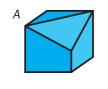
Octaedro

8 caras que son triángulos regulares

Icosaedro

20 caras que son triángulos regulares

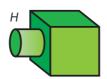
Cubo

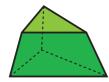

6 caras que son cuadrados

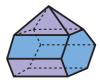
Dodecaedro

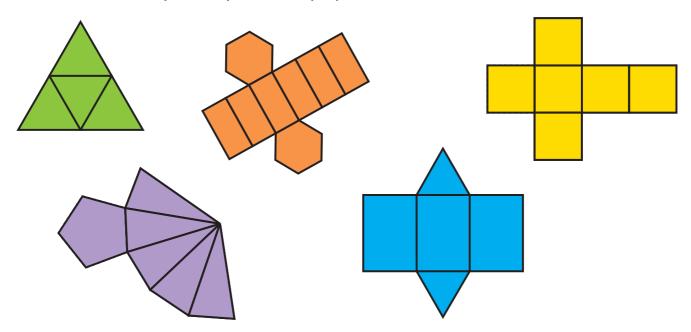
12 caras que son pentágonos regulares

1. Escribe cuáles de estos cuerpos son poliedros.






2. Cuenta las caras, vértices y aristas de cada poliedro.



¿Qué poliedros de los anteriores son prismas? ¿Cuál es una pirámide?

3. Escribe el nombre del prisma o pirámide al que pertenece cada desarrollo.

4. Contesta.

¿Qué dos desarrollos de la actividad 3 pertenecen a poliedros regulares? ¿Cómo se llaman?

5. Halla el número de caras, vértices y aristas de cada poliedro regular y completa la tabla.

Ejemplo:

Tiene 4 caras, con 3 lados cada una. Cada arista pertenece a 2 caras.

Tiene 4 caras, con 3 vértices cada una. Cada vértice pertenece a 3 caras.

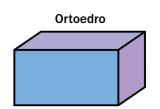
En total hay
$$\frac{4 \times 3}{2} = 6$$
 aristas.

En total hay
$$\frac{4 \times 3}{3} = 4$$
 vértices.

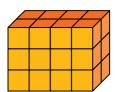
Poliedro regular	Número de caras	Número de aristas	Número de vértices
Tetraedro			
Octaedro			
Icosaedro			
Cubo			
Dodecaedro			

CÁLCULO MENTAL

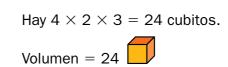
Calcula el 10 % o multiplica por 0,1: divide entre 10


10 % de 82
$$0.1 \times 82$$
 82 : 10 = 8,2

10 % de 7	10 % de 30	10 % de 400
10 % de 6	10 % de 90	10 % de 356
$0,1 \times 9$	$0,1 \times 75$	$0,1 \times 6.000$
$0,1 \times 8$	$0,1 \times 49$	$0,1 \times 8.700$

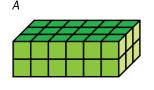


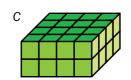
Volumen con un cubo unidad

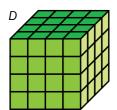

El **volumen** de un cuerpo es la cantidad de espacio que ocupa. En este curso se calculará el volumen de cubos y ortoedros (un ortoedro es un prisma cuyas caras son todas rectángulos).

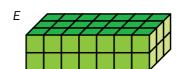
Para hallar el volumen de un ortoedro o un cubo, se toma como unidad de medida un cubito y se cuenta el número de cubitos de cada cuerpo.

Cada capa de este ortoedro tiene 4×2 cubitos. El ortoedro tiene 3 capas de alto.

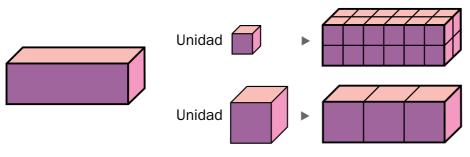


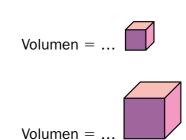

Cada capa de este cubo tiene 2×2 cubitos. El cubo tiene 2 capas de alto.




1. Cuenta los cubitos y calcula el volumen.





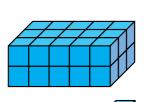


2. Calcula el volumen del ortoedro usando cada cubo unidad.

• ¿Por qué los valores numéricos que obtienes son distintos?

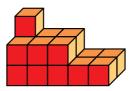
Volumen y capacidad

La capacidad de un recipiente equivale a su volumen.

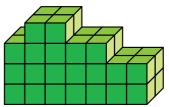


La capacidad de un recipiente con forma de cubo de 1 dm de arista es 1 litro (1 l).

La capacidad de un depósito con forma de cubo de 1 m de arista es 1 kilolitro (1 kl), es decir, 1.000 litros.



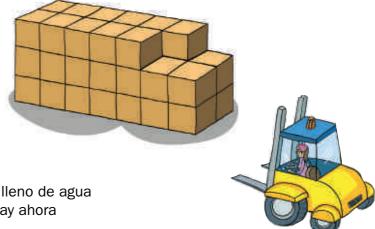
 Calcula el volumen de cada cuerpo. Después, halla su capacidad si la arista de cada cubo mide 1 dm.


Volumen = ...

 ${\sf Capacidad} = \dots \ell$

Volumen = ...

Capacidad = ... ℓ


Volumen = ...

 ${\sf Capacidad} = \dots \ell$

• ¿Cuál sería la capacidad de cada cuerpo anterior si la arista de cada cubo midiera 1 m?

2. Resuelve.

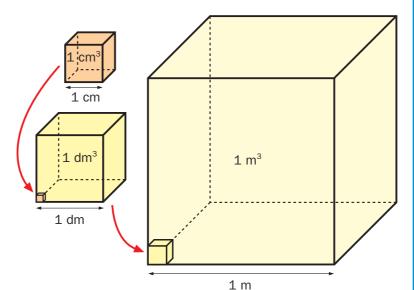
- Cada contenedor de la figura tiene una capacidad de 1 kl.
 Si se necesita almacenar 40 kl, ¿cuántos contenedores faltan por almacenar?
- En un depósito cúbico de 1 m de arista se han vertido 800 ℓ de leche.
 ¿Qué tiene más volumen: la parte llena del depósito o la vacía?
- De un recipiente cúbico de 1 dm de arista lleno de agua se han vertido 60 cl a una jarra. ¿Dónde hay ahora más agua: en el recipiente o en la jarra?

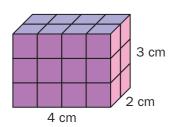
3. RAZONAMIENTO. Piensa y contesta.

Matías ha vertido 500 ℓ de agua en un recipiente cúbico de 1 m de arista.

- ¿Cuál es la capacidad del recipiente?
- ¿Coincide la capacidad con la cantidad de líquido que tiene dentro el recipiente?

Unidades de volumen


Para medir volúmenes de objetos usamos las unidades de volumen: centímetro cúbico, decímetro cúbico y metro cúbico.


- Un cubo de 1 cm de arista tiene un volumen de 1 centímetro cúbico (1 cm³).
- Un cubo de 1 dm de arista tiene un volumen de 1 decímetro cúbico (1 dm³).
- Un cubo de 1 m de arista tiene un volumen de 1 metro cúbico (1 m³).

Las equivalencias entre las unidades de volumen son:

$$1 \text{ m}^3 = 1.000 \text{ dm}^3$$

$$1 \text{ dm}^3 = 1.000 \text{ cm}^3$$

Para calcular el volumen de un ortoedro multiplicamos sus tres dimensiones.

Volumen: $4 \text{ cm} \times 2 \text{ cm} \times 3 \text{ cm} = 24 \text{ cm}^3$

 Las unidades de volumen son: metro cúbico (m³), decímetro cúbico (dm³) y centímetro cúbico (cm³).

$$1 \text{ m}^3 = 1.000 \text{ dm}^3$$

$$1 \text{ dm}^3 = 1.000 \text{ cm}^3$$

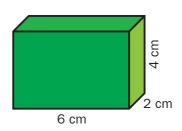
El volumen de un ortoedro es igual al producto de su largo por su ancho por su alto.

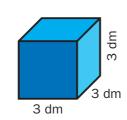
1. Piensa y contesta.

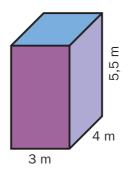
- ¿Cuál es el volumen de un cubo de 1 m de arista? ¿A qué unidad de capacidad equivale?
- ¿Cuál es el volumen de un cubo de 1 dm de arista? ¿A qué unidad de capacidad equivale?

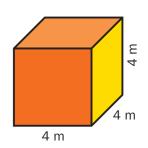
2. Completa.

$$4 \text{ m}^3 = \dots \text{ dm}^3$$
 $8 \text{ dm}^3 = \dots \text{ cm}^3$ $7.000 \text{ dm}^3 = \dots \text{ m}^3$ $6.000 \text{ cm}^3 = \dots \text{ dm}^3$ $12 \text{ m}^3 = \dots \text{ dm}^3$ $7,6 \text{ dm}^3 = \dots \text{ cm}^3$ $30.000 \text{ dm}^3 = \dots \text{ m}^3$ $23.500 \text{ cm}^3 = \dots \text{ dm}^3$ $3,8 \text{ m}^3 = \dots \text{ dm}^3$ $4,29 \text{ dm}^3 = \dots \text{ cm}^3$ $680 \text{ dm}^3 = \dots \text{ m}^3$ $786 \text{ cm}^3 = \dots \text{ dm}^3$ $95 \text{ dm}^3 = \dots \text{ m}^3$ $43 \text{ cm}^3 = \dots \text{ dm}^3$


3. Ordena de menor a mayor cada grupo.


PRESTA ATENCIÓN


No olvides expresar todas las medidas en una misma unidad antes de comparar.

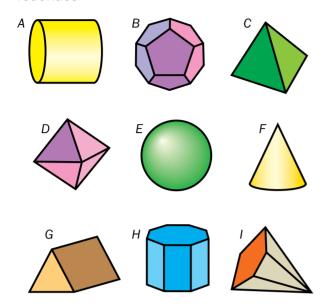

5 m³	7.000 dm ³	8,2 m ³	8.250 dm ³
3.500 cm ³	2,9 dm ³	3,01 dm ³	3.499 cm ³
7,05 dm ³	7.000 cm ³	7,2 dm ³	7.100 cm ³

4. Halla el volumen de cada cuerpo.



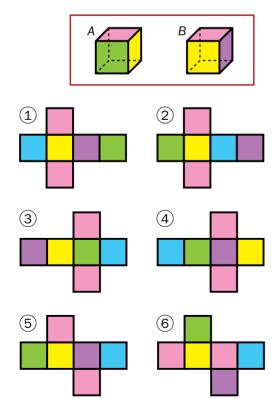
5. Resuelve.

- En Villabosque hay un depósito en forma de ortoedro.
 En él se almacena agua para combatir los incendios forestales. Sus dimensiones son 20 m de largo,
 15 m de ancho y 12 m de alto.
 - ¿Cuál es el volumen del depósito?
 - ¿Cuál es su capacidad en kilolitros?¿Y en litros?
- En el pueblo de Valverde tienen también un depósito contra incendios. Tiene forma cúbica y su arista mide 15 m.
 - ¿Cuál es su volumen? ¿Es mayor o menor que el volumen del depósito de Villabosque?
 - ¿Cuál es su capacidad en litros?
 - ¿Cuántos litros de agua caben en el depósito de Valverde menos que en el depósito de Villabosque?
 ¿Cuántos kilolitros son?

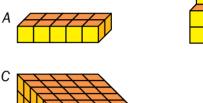

CÁLCULO MENTAL

Calcula el 50 % o multiplica por 0,5: divide entre 2

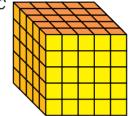
50% de 40	50% de 600
50% de 30	50% de 480
0,5 × 28	0,5 × 2.000
0,5 × 36	0,5 × 4.600
	50% de 30 0,5 × 28

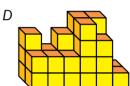

Actividades

 Clasifica estos cuerpos en poliedros y cuerpos redondos.


2. Contesta.

- ¿Qué poliedros de la actividad anterior son prismas? ¿Y pirámides?
- ¿Cuáles son poliedros regulares?
- Relaciona cada cubo con los desarrollos que lo pueden formar.




4. ESTUDIO EFICAZ. Explica.

- En qué se diferencian los poliedros y los cuerpos redondos.
- En qué se parecen y se diferencian un prisma y una pirámide triangulares.
- 5. Calcula el volumen de cada cuerpo usando el cubo unidad.

- 6. Halla la capacidad de cada cuerpo de la actividad 5 suponiendo que la arista de cada cubo mide.
 - 1 m.
- 1 dm.

7. Piensa y contesta.

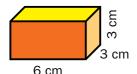
- Dos recipientes distintos, ¿pueden tener la misma capacidad?
 ¿Y el mismo volumen?
- Dos recipientes con la misma capacidad, ¿tienen el mismo volumen?
- Dos recipientes con una misma cantidad de líquido dentro, ¿pueden tener el mismo volumen? ¿Y distinto? ¿Pueden tener la misma capacidad? ¿Y distinta?
- 8. Completa.

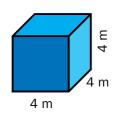
$$3 \text{ m}^3 = \dots \text{ dm}^3$$

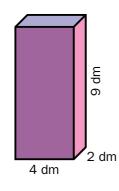
 $172 \text{ dm}^3 = \dots \text{ m}^3$

 $1,5 \text{ m}^3 = \dots \text{ dm}^3$ $24 \text{ dm}^3 = \dots \text{ cm}^3$

 $800 \text{ cm}^3 = \dots \text{ dm}^3$


 $5.000 \text{ dm}^3 = \dots \text{ m}^3$


 $0.16 \text{ dm}^3 = \dots \text{ cm}^3$


 $39 \text{ cm}^3 = \dots \text{ dm}^3$

9. Calcula el volumen de estos cuerpos.

10. Calcula el volumen de cada cuerpo.

- Un ortoedro que mide 3 m de ancho,6 m de largo y 5 m de alto.
- Un ortoedro que mide 25 cm de largo,
 20 cm de ancho y 5 cm de alto.
- Un cubo cuya arista mide 10 dm.

11. Resuelve.

En una cubitera hay 20 cubitos de hielo.
 Cada uno de ellos tiene 2 cm de arista.
 ¿Cuál es el volumen de un cubito?
 ¿Y de todos los cubitos de la cubitera?

 Para trasplantar un árbol, Mario ha hecho un agujero de 2 m de largo, 2 m de ancho y 1,5 m de profundidad. El volumen que ocupan las raíces del árbol es 1 m³. ¿Cuántos metros cúbicos de tierra debe añadir para rellenar el agujero?

ERES CAPAZ DE... Hacer cálculos para el mantenimiento de una piscina

En una escuela de natación están preparando la piscina para esta temporada.

La han llenado de agua y tienen que añadir cloro al agua para dejarla a punto y poder empezar las clases.

La piscina de la escuela tiene forma de ortoedro y mide 50 m de largo, 20 m de ancho y 2 m de profundidad.

En la escuela saben que deben poner 4 g de cloro por cada metro cúbico de agua de la piscina. El cloro lo compran en botes de 5 kg cada uno.

- ¿Cuántos metros cúbicos de agua tiene la piscina? ¿Cuántos kilolitros son?
- ¿Cuántos gramos de cloro deben poner en total en la piscina?
- ¿Cuántos botes de cloro tienen que comprar para prepararla?
 ¿Les sobrará algo de cloro?

 \bigoplus

Solución de problemas

Empezar con problemas más sencillos

En algunos problemas, es útil resolver otros más sencillos primero para obtener pistas. Resuelve estos problemas trabajando antes algunos más sencillos.

Magdalena ha hecho con cubos una torre de 5 capas como la de la figura. Unos cubos se ven y otros no. ¿Cuántos cubos se ven? ¿Cuántos están ocultos?

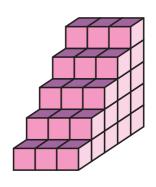
▶ Para resolver el problema, vamos a considerar primero torres de 1, 2, 3 y 4 capas.

Cubos visibles: 1
Cubos ocultos: 0

Cubos visibles: 1 + 3 = 4

Cubos ocultos: 1

Cubos visibles: 1 + 3 + 5 = 9Cubos ocultos: 1 + 3 = 4


Cubos visibles: 1 + 3 + 5 + 7 = 16Cubos ocultos: 1 + 3 + 5 = 9

Para 5 capas, siguiendo la pauta

Cubos visibles: 1 + 3 + 5 + 7 + 9 = 25Cubos ocultos: 1 + 3 + 5 + 7 = 16

- ¿Cuántos cubos visibles tendrá una torre como la de Magdalena que tenga 7 capas?
 ¿Y si tiene 10 capas?
- 2. Javier ha hecho una torre de 5 capas como la de la figura de la derecha. ¿Cuántos cubos visibles tiene? ¿Y ocultos?

¿Cuántos cubos de cada tipo habrá en una torre de 8 capas? ¿Y de 10 capas?

EJERCICIOS

 Expresa como una potencia y escribe cómo se lee.

 \bullet 4 × 4 × 4 × 4 × 4 \bullet 5 × 5 × 5

• 7 × 7 × 7

2. Expresa usando una potencia de 10.

1.000 100.000 100.000.000

3. Calcula.

• $\sqrt{16}$ • $\sqrt{36}$ • $\sqrt{64}$ • $\sqrt{100}$

4. ESTUDIO EFICAZ. Completa el esquema.

ÁREA DE FIGURAS PLANAS

— Rectángulo ▶ $b \times h$ — Cuadrado ▶ ...

5. Calcula.

 $\begin{array}{c|ccccc} \frac{2}{3} + \frac{4}{8} & \frac{7}{5} - \frac{4}{15} & 7,35 + 0,98 \\ & 9 - 6,78 \\ \hline \frac{3}{4} \times \frac{6}{9} & \frac{8}{3} : \frac{7}{4} & 4,2 \times 6,09 \\ & 9,405 : 45 \end{array}$

6. Calcula.

• $\frac{3}{5} + \frac{2}{6} \times \frac{4}{10}$ • $25 \times 3.6 - 48 : 1.6$

• $\frac{5}{2} - \left(\frac{4}{3} - \frac{5}{6}\right)$ • 5,64 : (0,27 + 0,33)

7. Expresa en la unidad indicada.

En cm² \triangleright 12 dm² 890 mm² 0,7 m²

En $m^2 \triangleright 8,5 \text{ a} \quad 4,9 \text{ hm}^2 \quad 325 \text{ dm}^2$

En $hm^2 > 916 m^2 28 km^2 147 dam^2$

En ha \triangleright 82 a 2,3 hm² 734 ca

PROBLEMAS

8. Dos tercios de los asistentes a una función de teatro eran mujeres y de ellas un quinto eran mayores de 60 años. ¿Qué fracción de los asistentes eran mujeres mayores de 60 años?

- 9. Juan tiene 120 libros. Tres cuartos son novelas, el 20 % son cuentos y el resto son diccionarios. ¿Cuántos libros de cada tipo tiene Juan?
- 10. Una moneda de 1 céntimo de euro pesa 2,30 g. ¿Cuántas monedas habrá en una bolsa de monedas de 1 céntimo que pesa 35 kg y 190 g?
- 11. Luis tiene un cordón de 9 m. Lo divide en dos partes iguales. Con una de ellas hace trozos de 0,25 m y con la otra hace trozos de 0,15 m. ¿Cuántos trozos obtiene en total?
- 12. En una parcela cuadrada de 40 m de lado se ha instalado un estanque circular de 10 m de radio. ¿Cuántos metros cuadrados de parcela han quedado libres?
- 13. María tiene ahorrados 600 €. Con un octavo de sus ahorros compra varios libros iguales para regalar. Cada libro cuesta 12,50 €. ¿Cuántos libros ha comprado María?

15

Estadística

Todos debemos ayudar a cuidar el medio ambiente.

Las empresas automovilísticas diseñan vehículos con motores que cada vez consumen menos, tanto en las ciudades como en los viajes por carretera.

A continuación tienes el consumo, en litros cada 100 km, de tres tipos de vehículos:

	En ciudad	En carretera
Turismo	7	5
Furgoneta	11	9
Todoterreno	10	8

- ¿Cuál es el consumo medio en litros cada 100 km de cada tipo de vehículo?
- El consumo en ciudad de cada vehículo, ¿es mayor o menor que el consumo medio?
- El consumo en carretera de cada vehículo, ¿es mayor o menor que el consumo medio?

Agrupación de datos en una tabla

Cuando tenemos muchos datos, es conveniente contar cuántas veces aparece cada uno y después agrupar los resultados en forma de tabla. Así, podemos saber fácilmente qué datos aparecen más y hacer cálculos de manera más rápida.

Se han anotado las edades de los niños que han ido a la consulta de un pediatra.

Edades: 3, 3, 11, 5, 3, 8, 3, 5, 8, 3, 5 y 3 años

Edad (años)	3	5	8	11
Número de veces	6	3	2	1

Media aritmética

La media aritmética o media de un grupo de datos se calcula así:

- 1.º Se multiplica cada dato por el número de veces que aparece y se suman todos los productos.
- 2.º Se divide la suma por el número total de datos.

La media de los datos de arriba se calcula así:

Edad (años)	3	5	8	11
Número de veces	6	3	2	1

1.°
$$3 \times 6 + 5 \times 3 + 8 \times 2 + 11 \times 1 = 60$$

2.° $6 + 3 + 2 + 1 = 12$; $60 : 12 = 5$

La media es 5.

1. Agrupa cada conjunto de datos en una tabla.

- Número de hermanos: 1, 1, 1, 1, 2, 2, 2, 3, 3, 4
- Puntos en un examen: 8, 5, 6, 6, 5, 8, 5, 8, 4, 6, 5
- Número de libros leídos: 3, 4, 4, 3, 6, 3, 2, 5, 4, 5, 3, 6

2. Calcula la media de cada conjunto de datos de la actividad anterior.

3. Piensa y escribe.

- Tres números diferentes cuya media sea 6.
- Cuatro números (alguno de ellos repetido) cuya media sea 8.

VAS A APRENDER

- A reconocer las variables estadísticas.
- A calcular frecuencias absolutas y relativas de unos datos.
- Cómo obtener la media y la moda de unos datos.
- Cómo hallar la mediana y el rango de unos datos.

Variables estadísticas

Una empresa ha contratado a Jorge para que haga unas encuestas. En ellas hace preguntas muy diferentes y obtiene distintos tipos de datos.

La Estadística se encarga de extraer información de los datos.

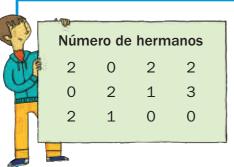
El peso, la nacionalidad, la edad, el color de ojos... son variables estadísticas.

- Jorge ha preguntado su peso en kilos a varias personas.
 Las respuestas han sido todas números: 52, 74, 68...
 El peso es una variable cuantitativa.
- También les ha preguntado su nacionalidad.
 Las respuestas no han sido números: España, Perú,
 Rusia, China...

La nacionalidad es una variable cualitativa.

La Estadística recoge datos para extraer información de ellos.

Las variables estadísticas pueden ser cuantitativas (si tienen valores numéricos) o cualitativas (si tienen valores de otro tipo).


1. Copia y completa la tabla.

Variable estadística	¿Qué pregunta se haría?	¿Las respuestas son numéricas?	¿Es cualitativa o cuantitativa?
Color favorito	¿Qué color le gusta más?	No	Cualitativa
Altura			
Programa de TV preferido			
Profesión			
Longitud al nacer			
Nombre del padre			

- 2. Escribe tres variables cuantitativas y tres variables cualitativas.
- 3. Observa cada grupo de respuestas. Escribe cuál puede ser la variable estadística y señala si es cuantitativa o cualitativa.
 - Ejemplo: 10, 6, 9, 8, 7
 - Variable estadística: nota en 5 controles de Matemáticas.
 - Tipo de variable: cuantitativa.
 - Naranja, sandía, plátano, pera
 - 13, 17, 15, 12, 21
 - 156, 184, 203, 172, 179

- Flan, natillas, tarta, helado
- Lectura, deporte, fotografía, bricolaje
- 2, 1, 0, 1, 2, 0, 1

Frecuencia absoluta y frecuencia relativa

José ha preguntado a 12 de sus compañeros cuántos hermanos tienen y ha anotado sus respuestas.

Observa el dato 2:

- Aparece 5 veces. La frecuencia absoluta de 2 es 5.
- Hay 12 datos en total. La **frecuencia relativa** de 2 es $\frac{5}{12}$.

José ha contado las veces que se repite cada dato y ha formado la tabla de frecuencias:

Número de hermanos	0	1	2	3
Frecuencia absoluta	4	2	5	1
Frecuencia relativa	<u>4</u> 12	<u>2</u> 12	<u>5</u> 12	<u>1</u> 12

- ► Suma: 12 (número total de datos)
- ▶ Suma: $\frac{12}{12} = 1$
- La frecuencia absoluta de un dato es el número de veces que aparece.
- La frecuencia relativa de un dato es el cociente entre el número de veces que aparece el dato y el número total de datos.

1. Elabora la tabla de frecuencias. Después, contesta.

Manuel ha anotado el color del pelo de los clientes que ha tenido en su peluquería:

moreno rubio moreno rubio pelirrojo rubio moreno moreno moreno pelirrojo

Color de pelo	moreno		
Frecuencia absoluta			➤ Suma:
Frecuencia relativa			► Suma:

- ¿Con qué coincide la suma de las frecuencias absolutas?
- 2. Tira una moneda 15 veces y construye la tabla de frecuencias de los resultados.

CÁLCULO MENTAL

Calcula el 20 % o multiplica por 0,2: divide entre 5

20 % de 5	20 % de 500	20 % de 5.000
20 % de 10	20 % de 100	20 % de 1.000
$0,2 \times 15$	$0,2 \times 250$	$0,2 \times 3.500$
0.2×40	0.2×300	0.2×4.000

Media y moda

Un grupo de amigos se han medido y han agrupado las alturas en la siguiente tabla.

Altura en cm	172	173	174	175
Frecuencia absoluta	6	4	4	1

• ¿Cuál es la altura media?

Para calcular la media de los datos:

- 1.º Multiplica cada dato por su frecuencia absoluta y suma los productos.
- 2.º Divide la suma entre el número de datos.

$$172 \times 6 + 173 \times 4 + 174 \times 4 + 175 \times 1 =$$

= 1.032 + 692 + 696 + 175 = 2.595

N.° de datos = 6 + 4 + 4 + 1 = 152.595 : 15 = 173

La altura media es 173 cm.

• ¿Cuál es la altura que más se repite en el grupo de amigos?

El dato que más veces se repite es 172, es el que tiene mayor frecuencia absoluta (6). La **moda** es el dato (o datos) con mayor frecuencia absoluta.

La moda de las alturas es 172 cm.

- La media de un conjunto de datos se obtiene al dividir la suma de los productos de cada dato por su frecuencia absoluta entre el número total de datos.
- La moda es el dato (o datos) con mayor frecuencia absoluta.

1. Calcula la media y la moda de los datos. Después, contesta.

En la tabla está el número de días a la semana que practicaban deporte varias personas a las que se encuestó.

Número de días	0	1	2	3
Frecuencia absoluta	4	13	2	1

¿Cuántas personas hacían deporte un número de días mayor que la media?
 ¿Y un número de días menor?

2. Calcula la media de los siguientes grupos de números.

PRESTA ATENCIÓN

No olvides agrupar los datos cuando estén repetidos.

- 12, 19, 15, 11, 13, 14
- 4, 8, 8, 6, 2, 8, 9, 10, 8
- 2, 2, 1, 5, 1, 3, 5, 2, 5, 4
- 40, 45, 45, 36, 42, 45, 40, 43

3. Observa la tabla de frecuencias y contesta.

En la tabla tienes cuántos alumnos de una clase asisten a cada tipo de actividad extraescolar.

Actividad extraescolar	Ajedrez	Inglés	Música	Tenis
Frecuencia absoluta	3	7	7	2

- ¿Cuál es la mayor frecuencia absoluta? ¿Qué datos la tienen?
 ¿Cuáles son las modas de los datos?
- ¿Puedes calcular la media de los datos? ¿Por qué?

4. Experimenta y contesta.

- Lanza una moneda 10 veces y anota los resultados. ¿Cuál es su moda?
- Lanza un dado 10 veces y anota los resultados. ¿Cuál es su moda? ¿Y su media?

5. Resuelve.

- Las notas de Matemáticas de Tomás a lo largo del curso han sido:
 - 5 7 6 8 6 6 7 7 8 8 ¿Cuál ha sido la nota media de Tomás?
- Las alturas de los jugadores de un equipo de fútbol sala son las siguientes:

Portero Defensas Delanteros

▼ 182 cm 178 cm y 174 cm 168 cm y 178 cm

- ¿Cuál es la altura media del portero y los defensas?
- ¿Cuál es la altura media de los delanteros?
 ¿Y la altura media del equipo?
- Milagros ha medido unos escarabajos en un trabajo de investigación. Sus longitudes en centímetros son:

1,9 2 2,3 1,7 2,1 1,8 2,2 ¿Cuál es la media de las longitudes?

6. Escribe.

- Una lista de 4 números cuya media sea 9.
- Una lista de 3 números con una moda.
- Una lista de 5 números cuya media sea 7.
- Una lista de 3 números con tres modas.

7. RAZONAMIENTO. Piensa y contesta.

Ana dice que ha escrito una lista de 5 números que tiene 3 modas.

- ¿Es eso posible? Intenta escribir tú una.
- ¿Cuál es el número mínimo y el número máximo de modas que puede tener una lista de 5 números? ¿Y si la lista tiene 7 números?

Mediana

Jon calza un 42, Ana un 37 y Berta un 40. ¿Cuál es la mediana de las tres tallas de calzado?

Para calcular la mediana:

- 1.º Ordena los datos.
- 2.º Busca el dato que ocupa el lugar central.

La mediana es 40.

Luis calza un 39, Sara un 37, Mila un 42 y Teo un 37. ¿Cuál es la mediana de las cuatro tallas de calzado?

Para calcular la mediana:

- 1.º Ordena los datos.
- 2.º Calcula la media aritmética de los dos datos centrales.

$$37 \quad 37 \quad 39 \quad 42$$

$$2 \quad 37 \quad 39 \quad 42$$
Datas controles

La mediana es 38.

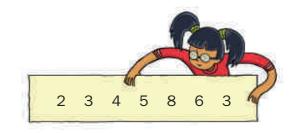
- La mediana de un conjunto con un número impar de datos es, una vez ordenados, el dato que ocupa el lugar central.
- La mediana de un conjunto con un número par de datos es, una vez ordenados, la media de los dos datos centrales.

1. Calcula la mediana de cada conjunto de números.

PRESTA ATENCIÓN

Al ordenar los números, escríbelos todos aunque se repitan.

2. Resuelve.


Leonor ha jugado varios partidos de tenis con estas duraciones: 73 minutos, 170 minutos, 115 minutos, 85 minutos, 125 minutos y 80 minutos. ¿Cuál es la media y la mediana de las duraciones de los partidos?

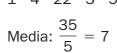
3. Escribe.

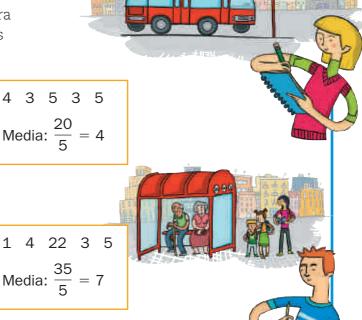
- Cinco números cuya mediana sea 9.
- Seis números cuya mediana sea 9.

4. Piensa y contesta.

Miriam dice que la mediana de la lista de números que ha escrito es 5, porque es el dato que está en el centro de la lista. ¿Tiene razón Miriam? ¿Por qué?

Rango


Mónica y Raúl han anotado los minutos de espera en dos líneas de autobús para ver cuál de las dos funciona mejor.


 Fíjate en los datos que tiene Mónica. Todos están muy próximos a la media. La diferencia del dato mayor y el menor se llama rango.

El dato mayor es 5 y el dato menor es 3. El rango es 5 - 3 = 2.

 Fíjate en los datos de Raúl. Hay datos muy lejos de la media. El dato mayor es 22 y el dato menor es 1. El rango es 22 - 1 = 21.

4 3 5 3 5 Media: $\frac{20}{5} = 4$

El rango da idea de la proximidad de los datos a la media. Se calcula restando el dato menor al dato mayor.

- 1. Calcula el rango y la media de cada grupo de datos.
 - 5, 5, 6, 6, 8
- 6, 5, 8, 20, 1, 250, 24, 25, 19, 37
- 1, 1, 2, 4, 7
- 9, 10, 10, 9, 9, 103, 11, 7, 15, 12, 0
- 2. Piensa y contesta.

Estas son las temperaturas máximas (en °C) previstas en dos ciudades para los días de la semana que viene.

Mantown ▶ 13 12 15 14 11 12 14 Greenville ▶ 7 7 13 19 19 13 13

- ¿Cuál será la temperatura media en cada ciudad?
- ¿En qué ciudad habrá un mayor rango en las temperaturas?

CÁLCULO MENTAL

Calcula el 25 % o multiplica por 0,25: divide entre 4

25 % de 28 28:4=7 0.25×28

25 % de 4	25 % de 800	25 % de 4.000
25 % de 8	25 % de 400	25% de 3.600
$0,25 \times 12$	$0,25 \times 240$	$0,25 \times 0,024$
$0,25 \times 20$	$0,25 \times 320$	0,25 × 0,048

Actividades

- 1. Clasifica cada variable estadística en cuantitativa o cualitativa.
 - Número de hermanos.
 - Sexo.
 - Número de clientes cada día de la semana en una tienda.
 - Primer apellido.
 - Ciudad de nacimiento.
 - Altura.

2. Completa la tabla y contesta.

En las clases de 6.º han hecho una encuesta sobre la comida favorita de los alumnos:

	Frecuencia absoluta	Frecuencia relativa
Pasta	24	
Carne	10	
Pescado	6	
Verdura	8	
Otros	3	

- ¿Cuánto vale la suma de las frecuencias absolutas? ¿Cuántos alumnos hay en 6.°?
- ¿Cuánto vale la suma de las frecuencias relativas?
- 3. Construye la tabla de frecuencias.

El número diario de asistentes a un cursillo de cerámica que duró 14 días fue:

- Lanza un dado 10 veces y haz la tabla de frecuencias de los resultados. Después, contesta.
 - ¿Cuál ha sido el dato con mayor frecuencia absoluta? ¿Y relativa?
 - ¿Coinciden tus resultados con los de tus compañeros?

5. ESTUDIO EFICAZ. Copia y completa el esquema.

- 6. Calcula la media, la mediana, la moda y el rango de estos grupos de números.
 - 11, 8, 9, 8, 9
 - 6, 4, 6, 4, 4, 6
 - 14, 19, 10, 6, 10, 7
 - 8, 14, 5, 10, 15, 6, 5
 - 9, 8, 6, 6, 5, 6, 8, 8

- 7. Halla la media, la mediana, la moda y el rango de los datos que obtuviste al realizar la actividad 4.
- 8. Lee e indica quién tiene razón.

En la tabla está el número de camisetas de cada talla vendidas en una tienda.

Talla	8	10	12	14	16
Frecuencia absoluta	4	7	5	3	2

- Verónica dice que la moda es 16 porque es el número de la talla mayor.
- Angie dice que la moda es 12 porque es el dato central.
- Carlos dice que la moda es 10 porque es el dato que más se repite.
- Minerva dice que la moda es 8 porque su frecuencia absoluta es la frecuencia que ocupa el lugar central.

9. Piensa y contesta.

Al preguntar a 9 familias cuántos móviles tenían en total, dieron las respuestas que ves en la tabla.

Número de móviles	0	1	2	3
Frecuencia absoluta	1	5	2	1

- ¿Cómo calcularías la mediana? ¿Cuál es?
- ¿Cómo hallarías el rango? ¿Cuál es?

10. Piensa y escribe.

- Tres números cuya mediana sea 7.
- Cuatro números cuya media y moda sean 5.
- Cuatro números cuya media y mediana sean 4.
- Cinco números cuya media, mediana y moda sean 6.

11. Resuelve.

 Se ha realizado una encuesta a un grupo de personas sobre el número de llamadas telefónicas hechas ayer. Estos son los resultados.

N.º de llamadas	Frecuencia
0	16
1	15
2	8
3	1
4	2

Halla la media y la moda de los datos.

 El precio en euros del menú del día en varios restaurantes es:

12	11	14	12	14
10	11	12	12	12

Halla la media, la moda, la mediana y el rango de los precios.

ERES CAPAZ DE...

Emilio es entrenador de baloncesto. Su equipo está jugando un partido importante y en los últimos minutos tiene que hacer un cambio.

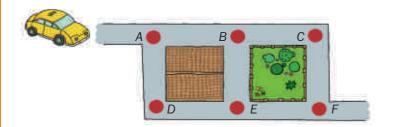
Tiene dos jugadores en el banquillo a los que puede sacar a jugar.

En sus estadísticas, Emilio tiene los puntos anotados por cada jugador en los últimos seis partidos:

Carpenter \rightarrow 24 4 6 16 9 19 Mirovich \rightarrow 13 11 12 14 12 10

- ¿Cuál es la media de puntos anotados por cada jugador? ¿Y el rango?
- ¿A qué jugador sacarías tú a jugar?
 Explica por qué.
- ¿Coincide tu respuesta con la dada por tu compañero?

Aplicar la Estadística en el deporte



Solución de problemas

Hacer un diagrama de árbol

Los diagramas de árbol son útiles para organizarse a la hora de resolver problemas. Resuelve los siguientes haciendo un diagrama de árbol.

¿Cuántos caminos diferentes puede seguir el taxi para ir desde A hasta F sin pasar dos veces por el mismo sitio?

- Vamos a realizar un diagrama de árbol que iremos completando poco a poco para no olvidar ningún camino posible. Ten en cuenta que no podemos pasar dos veces por el mismo sitio.
 - 1.° Desde el punto A, puede ir a B o a D.

- 3.° Desde C y E, viniendo de B, tiene que ir a F.

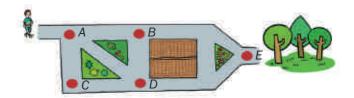
$$\begin{array}{c|c}
C - F \\
A & E - F \\
D - E
\end{array}$$

2.° Desde B, puede ir a C o a E. Desde D tiene que ir a E.

A

B

C


4.° Desde E, viniendo de D, puede ir a F o B.
Desde B tiene que ir a C y luego a F.

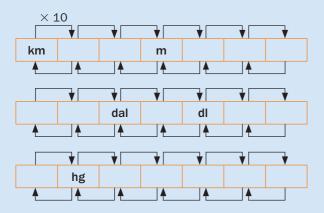
C — F

Desde B tiene que ir a C y luego a F.

Solución: Los cuatro caminos son ABCF, ABEF, ADEF y ADEBCF.

1. ¿Cuántos caminos diferentes puede seguir Juan para ir caminando desde A a E?

2. En una agencia de viajes ofrecen para ir a una ciudad estas opciones:


Puedes ir en avión o tren. Si vas en avión, puedes elegir entre un hotel de 3 estrellas y uno de 4 estrellas. Si vas en tren, solo hay hotel de 3 estrellas. En todos los casos puedes optar por habitación con desayuno o sin desayuno. ¿Cuántas opciones existen?

3. INVENTA. Escribe un problema similar a los de esta página en el que sea útil hacer un diagrama de árbol.

EJERCICIOS

- 1. Descompón cada número y escribe cómo se lee.
 - **3.165.601**
- 626.024.319
- 61.600.124
- 160.386.067
- 2. ESTUDIO EFICAZ. Completa los cuadros y haz otros similares para las medidas de superficie y volumen.

3. Completa.

$$7,2 \text{ m}^2 = \dots \text{ dm}^2$$

$$4.500 \text{ cm}^3 = \dots \text{ dm}^3$$

$$900 \; dm^2 = ... \; m^2$$

$$1,28 \text{ dm}^3 = \dots \text{ cm}^3$$

$$15~\text{dm}^2 = \dots~\text{cm}^2$$

$$6,3 \text{ m}^3 = \dots \text{ dm}^3$$

$$0,2 \text{ hm}^2 = \dots \text{ m}^2$$

$$1.7 \text{ dm}^3 = \dots \text{ m}^3$$

- 4. Escribe con cifras.
 - Quince novenos.
 - Cuatro quinceavos.
 - Doce centésimas.
 - Ocho unidades y ciento tres milésimas.
 - Dos unidades y tres centésimas.
- 5. Calcula.

$$ullet \frac{7}{2} - \left(\frac{5}{3} - \frac{7}{6}\right)$$

•
$$\frac{7}{2} - \left(\frac{5}{3} - \frac{7}{6}\right)$$
 • 34: 1,7 + 12 × 2,5

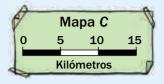
•
$$\frac{11}{6} - \frac{2}{6} \times \frac{3}{4}$$

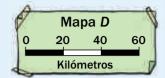
•
$$\frac{11}{6} - \frac{2}{6} \times \frac{3}{4}$$
 • 48,3 : (0,42 - 0,12)

PROBLEMAS

- 6. María compró dos kilos y tres cuartos de tomates. Gastó dos quintos de kilo en hacer una ensalada y siete octavos en una salsa. ¿Le quedó más o menos de 1 kg de tomates?
- 7. En diciembre una nevera valía 720 €. En enero rebajaron su precio un 10 % y en febrero lo subieron un 5%. ¿Cuánto valía la nevera tras la subida?
- 8. Luisa tiene un estangue con forma de ortoedro de 4 m de largo, 3 m de ancho y 2 m de profundidad. Manuel tiene otro con 7 m de largo, 3 m de ancho y 1,5 m de profundidad. ¿Cuál de los dos estangues tiene mayor volumen?

- 9. En una granja han envasado 600 huevos. Tres quintos los han puesto en hueveras de 12 huevos y el resto en hueveras de 6 huevos. ¿Cuántas hueveras han usado en total?
- **10.** José ha comprado 3,5 m de cordón rojo a 1,60 € el metro y 7,6 m de cordón azul a 2,75 € el metro. Ha pagado con tres billetes de 10 €. ¿Cuánto le han devuelto?
- **11.** Para hacer estofado para 3 personas se usan 0,45 kg de patatas y 0,315 kg de carne. ¿Cuántos gramos de patatas hacen falta para un estofado para 5 personas? ¿Cuántos kilos de carne hacen falta para un estofado para 8 personas?


Repaso trimestral


MEDIDA

Observa cada escala y contesta.

- ¿Cuántos centímetros en la realidad representa 1 cm en cada plano? ¿Y cuántos kilómetros en la realidad representa 1 cm en cada mapa?
- ¿Qué distancia real representan 5 cm en cada plano y en cada mapa?

2. Elige en cada caso la unidad más adecuada para expresar cada medida.

- La longitud de un río y el grosor de un tornillo.
- La capacidad de una taza y de una piscina olímpica.
- El peso de un bolígrafo y la carga de un barco mercante.
- La superficie de un piso y de la pantalla de un teléfono móvil.
- El volumen de la caja de un jarabe y del remolque de un camión.

3. Escribe en la unidad indicada.

•
$$0.2 dl = ... ml$$

10.95 - 8

$$0.053 \text{ kg} = \dots \text{ dg}$$

• 6,2 dam
$$^2 = ... m^2$$

•
$$791 \text{ hm}^2 = ... \text{ km}^2$$

$$0,085 \text{ dm}^2 = \dots \text{ mm}^2$$

•
$$5 \text{ m}^3 = ... \text{dm}^3$$

•
$$0.3 \text{ m}^3 = \dots \text{ cm}^3$$

•
$$4.718 \text{ cm}^3 = \dots \text{ dm}^3$$

2 hm, 8,4 m y 3 cm

0,19 dam, 56 cm y 7 mm

En cl

■ 3 dal, 4 \(\ell \) 16,8 dl

● 4,5 ℓ, 2,74 dl y 9,3 ml

6 hg, 37 g y 250 dg

En cm²

2 m² y 5,8 dm²

0,9 m² y 716 mm²

CÁLCULO MENTAL

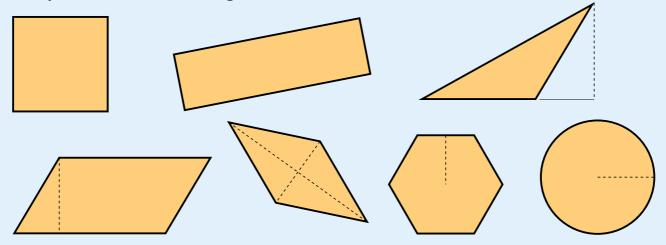
En esta columna aproxima los decimales a las unidades para operar.

$$5,2 + 7,6$$

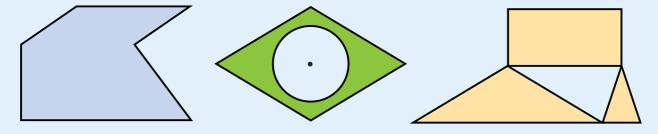
 $9,7 - 2$

$$6,9 \times 4$$

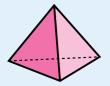
$$6,9 \times 4$$
 $6,2 \times 30$ $3,1 \times 50$ $5,4 \times 200$

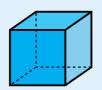

$$0,1 \times 93$$
 50% de 26

$$50\%$$
 de 26 $0,5 \times 400$

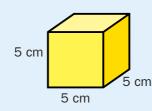

$$25\%$$
 de 120 0.25×24

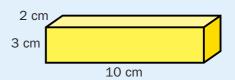
GEOMETRÍA


1. Mide y calcula el área de cada figura.



- 2. Halla el área de las siguientes figuras planas.
 - Un cuadrado de 6,5 cm de lado.
 - Un rectángulo de 3,9 cm de base y 2,8 cm de altura.
 - Un rombo cuyas diagonales miden 7 cm y 4 cm.
 - Un romboide de 6 cm de base y 8,2 cm de altura.
 - Un triángulo cuya base mide 10 cm y la altura 5,6 cm.
 - Un pentágono regular de 2 cm de lado y cuya apotema mide 1,4 cm.
 - Un círculo de 5 cm de radio.
- 3. Descompón cada figura en otras de área conocida, mide y calcula el área total.


4. Observa estos poliedros regulares y escribe en cada caso.



- Nombre.
- Tipo de cuerpo geométrico.
- Número y forma de las caras.
- Número de vértices y de aristas.

Halla el volumen de cada ortoedro.

Repaso trimestral

ESTADÍSTICA

Construye la tabla de frecuencias.

Estas son las edades de los chicos y chicas que forman un grupo de teatro:

10 años, 13 años, 12 años, 12 años, 14 años, 13 años, 12 años, 10 años, 11 años, 12 años, 14 años y 11 años

Edad (años)			
Frecuencia absoluta			
Frecuencia relativa			

- ¿Cuál es la suma de las frecuencias absolutas? ¿Qué indica?
- ¿Cuál es la suma de las frecuencias relativas? ¿Es siempre este valor?

2. Calcula la media, la mediana, la moda y el rango de estos grupos de números.

	5	8	11	
11		12	8	8

4	7	3	7	5
5	4	8	7	10

	6	2	9	2
2	6	4	1	

3. Observa la tabla y calcula.

En la siguiente tabla se ha anotado el peso de los jinetes de una carrera hípica.

Peso (kg)	53	54	55	56
Frecuencia absoluta	4	4	2	1

- La media.
- La mediana.
- La moda.
- El rango.

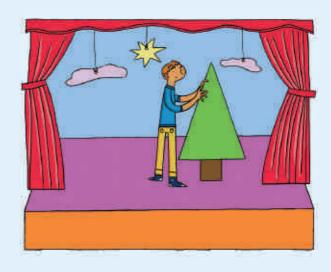
PROBLEMAS

1. Resuelve.

- Dos entradas a un castillo cuestan 5,60 €.
 ¿Cuánto cuestan 3 entradas? ¿Y 15 entradas?
- Enrique ha utilizado 45 barquillos para hacer 3 postres iguales.
 ¿Cuántos barquillos necesita para hacer 10 postres?
 ¿Cuántos postres puede hacer con 105 barquillos?
- Antonia ha comprado 4 bañadores iguales por 49,20 € y 5 toallas iguales por 47,50 €. ¿Cuánto cuestan 9 bañadores? ¿Y 3 toallas? ¿Qué es más caro, un bañador o una toalla? ¿Cuánto más?
- En una pastelería hay 60 tartas. El 25% son de chocolate, el 35% son de nata y el resto son de fruta. ¿Cuántas tartas de fruta hay en la pastelería?

Luisa ha comprado un jersey de 28 €
y un pantalón de 31,60 € que estaban
rebajados un 15%. ¿Cuánto ha pagado
Luisa por su compra?

2. Observa el plano de un circuito para bicicletas, mide y resuelve.


- ¿Qué longitud tiene en total el circuito en el plano? ¿Y en la realidad?
- Martín ha dado 3 vueltas y media al circuito.
 ¿Cuántos metros ha recorrido?
 ¿Cuántos kilómetros son?

3. Resuelve.

- Alba tiene una cuerda de 5 m de largo. Ha cortado 5 trozos de 7,6 dm cada uno y el resto lo ha dividido en 8 partes iguales. ¿Cuántos centímetros mide cada parte?
- Jorge ha comprado una caja con 8 botellas de leche de 1,5 l cada una. En total ha pagado por ellas 12,96 €.
 ¿Cuál es el precio de un litro de leche?
- Un montacargas admite un peso máximo de 7 quintales.
 Han cargado en él 3 paquetes de 86,5 kg cada uno y una caja con 300 latas de conserva de 400 g cada una.
 ¿Cuántos hectogramos más admite el montacargas?
- En un cartel que mide 84 dm² hay una fotografía de 3.250 cm². ¿Qué superficie del cartel no tiene foto?
- Leandro tiene un terreno de 9,5 a. Ha plantado 385 ca de tomates y el resto de patatas. ¿Cuántos metros cuadrados ha plantado de patatas?
- Raúl ha hecho un abeto de cartulina para una obra de teatro. Ha utilizado un triángulo de 1 m de base y 1,4 m de altura y un cuadrado de 0,3 m de lado. ¿Cuántos metros cuadrados de cartulina mide en total el abeto?
- Tamara ha cortado una luna de cristal rectangular de 75 cm de largo y 52 cm de ancho en 4 cristales iguales. ¿Cuál es la superficie de cada cristal?
- Elsa hace gimnasia con un aro que mide 80 cm de diámetro. ¿Cuál es la longitud del aro?
 Guarda el aro en una funda circular de 42 cm de radio. ¿Cuál es la superficie de la funda?
- Héctor tiene un depósito de agua con forma de ortoedro, de 2 m de largo, 1 m de ancho y 0,8 m de alto. ¿Cuál es su volumen en metros cúbicos? ¿Cuántos kilolitros de agua caben en él? ¿Cuántos litros son?

• En una estación meteorológica se han registrado en un día estas temperaturas: 17,7 °C; 19,2 °C; 20,1 °C; 25,3 °C; 21,6 °C; 19,8 °C y 16,3 °C. ¿Cuál es la temperatura media registrada ese día? ¿Cuál es la mediana de dichas temperaturas?